预印本arziv上能发中文论文吗? 还有,都是几天审核通过?发上去的论文是显示投稿的时间是吗?
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了预印本arziv上能发中文论文吗? 还有,都是几天审核通过?发上去的论文是显示投稿的时间是吗?相关的知识,希望对你有一定的参考价值。
应该是arXiv.org,这个不能发中文论文,而且2009后发英文论文也很困难。无名研究者只能挂主流杂志发表过的文章,arXiv.org拒绝非主流杂志比如GALILEAN ELECTRODYNAMICS和PHYSICS ESSAYS等的论文。可能因为名气搞大了,万一你有个大成果抢先欧美研究人员发表在上面了,以后你就是第一发现者了,那是他们不愿意的;另一方面的原因是后来出现很多与主流观点不一致的论文也往那儿投,arXiv.org推崇主流观点,不欢迎任何与主流观点不一致的东西。中国研究者对现在欧美所谓SCITOP期刊和预印服务器必须有一个清醒的认识,开创性的论文提交给那些期刊或预印服务,作用仅仅是启发他们的研究人员抢先写出论文发表,你的论文必然被退回来。这不仅仅因为学术上的小利益,更重要的是科学意识形态称霸世界的政治大利益。arXiv.org原本是挂尚未发表的论文的预印服务器,2009后就升级成为欧美霸权的重要意识形态工具之一了。中科院极力推崇欧美TOP期刊,分什么一、二、三、四区,或因对国际政治斗争认识水平过低所致,抑或欧美培养的学术汉奸推波助澜。我读过nature和pr系列某个领域的大量文章,nature基本上不讲究计算论证,只讲究像写文学作品样写得很好地介绍一些东西,prl很多数学计算是完全错误的。考古方面我无发言权,与理论物理相关的我可以负责任告诉你,作为中国研究人员,如果你写什么光子纠缠量子通信那样有可能消耗很大国力而实际上属于纯粹胡扯的非开创性文章,nature和science或arXiv有可能发表。 参考技术A ①、议论文的论点考点:第一,分清所议论的问题及针对这个问题作者所持的看法(即分清论题和论点)。第二,注意论点在文中的位置:(1)在文章的开头,这就是所谓开宗明义、开门见山的写法。
(2)在文章结尾,就是所谓归纳全文,篇末点题,揭示中心的写法。这种写法在明确表达论点时大多有。所以,总之,因此,总而言之,归根结底等总结性的词语。
第三、分清中心论点和分论点:分论一般位于段首或有标志性词语:首先、其次、第三等
第四、要注意论点的表述形式:有时题目就是中心论点。一篇议论文只有一个中心论点。
第五、通过论据来反推论点:论据是为证明论点服务的,分析论据可以看出它证明什么,肯定什么,支持什么,这就是论点。
②、议论文的论据考点:论据是论点立足的根据,一般全为事实论据和道理论据。1、用事实作论据。事例必须真实可靠,有典型意义,能揭示事物本质并与论点有一定的逻辑联系。议论文中,对所举事例的叙述要简明扼要,突出与论点有直接关系的部分。明确论据时,不仅要知道文中哪些地方用了事实论据,还要会概括事实论据。概括时,要做到准确,必须依据论点将论据本质特点把握住,然后用确切的语言进行表述。 2、用作论据的言论,应有一定的权威性,直接引用时要原文照录,以真核对,不能断章取义;间接引用时不能曲解原意。
③、议论文的结构、层次考点:结构有:并列式结构、对照式结构、层进式结构、总分式结构。
论文无法复现「真公开处刑」,PapersWithCode上线「论文复现报告」
点击 机器学习算法与Python学习 ,选择加星标
精彩内容不迷路
机器之心报道
现在,越来越多的机器学习(ML)研究者选择在论文发表时同步公开自己的代码,像 arXiv 这样的论文预印本平台也选择与机器学习资源网站 Papers with Code 合作,支持研究者在 arXiv 页面上添加代码链接。ICML、ICLR、NeurIPS 等一些顶会也要求投稿人在提交论文的时候附上代码,以供审稿人测试,确保其研究结果的可复现性。
但这一切仍然不代表论文复现变得容易了。前段时间,Reddit 用户「ContributionSecure14」在花费长时间复现一篇论文失败后,产生了专门列出无法复现论文清单的想法。他创建了一个名为「Papers Without Code」的 ML 研究反馈平台,专门挂出那些大家都无法复现的论文研究。
如果提交内容有效,则 Papers Without Code 方面将与该论文原作者联系,并要求其澄清或公布实现细节。论文成功复现后,可以在 PapersWithCode 或 GitHub 上发布,供其他研究人员参考。如果作者未及时答复,该论文将被添加到「不可复现的机器学习论文列表」中,公开处刑。
目前,该网站上挂出了 19 篇论文,详细列出了标题、链接、提交原因以及解决与否,可以看到有 8 篇论文显示「已被解决」。
但应看到,该网站创建数月以来,也仅仅提交了 19 篇论文,对于提升机器学习社区可复现方面远远不够。
近日,ML 领域著名的论文和代码资源网站 PapersWithCode 终于向「有代码也复现不了」这一老大难问题下手了,宣布其上线了新功能:论文可以链接到复现报告了!这是 ML 社区重视研究论文可复现性的新信号。
PapersWithCode:论文终于有复现报告了
PapersWithCode 以 ICML 2020 论文《Training Binary Neural Networks using the Bayesian Learning Rule》为例展示「论文复现报告」这项新功能。可以看到,PapersWithCode 在论文下方提供了复现报告,包括提交日期和报告摘要。
大家或者注意到了这份复现报告的提交者为「RC 2020」,这是 PapersWithCode 组织的一项 ML 顶会论文复现挑战赛。这项赛事的目的是鼓励可靠且可复现研究成果的发表和分享,ML 社区的成员可以选择顶会接收的论文来尝试复现。
所有的复现报告都将通过 OpenReview 进行同行评审,并显示在 PapersWithCode 网站原始论文的下方。在每年的复现挑战赛中,一批在「洞见性、正确性、逻辑清晰」等方面表现优秀的论文会发表在 ReScience C 期刊上。
与其他传统科学期刊截然不同,ReScience C 可以说是一个 GitHub 项目,提供了关于计算研究的每个新实现以及评审、解释和测试。PapersWithCode 的示例论文《Training Binary Neural Networks using the Bayesian Learning Rule》就发表在了该期刊上。目前,OpenReview 列出了所有在 RC 2020 挑战赛中被 ReScience C 接收的论文列表。
论文列表地址:https://openreview.net/group?id=ML_Reproducibility_Challenge/2020
用户现在可以在 PapersWithCode 和 ReScience 上查看所有 RC2020 挑战赛中的论文复现报告。
PapersWithCode 复现报告地址:https://paperswithcode.com/conference/rc-2020
ReScience 复现报告地址:http://rescience.github.io/read/#volume-7-2021
不过,目前提供复现报告的论文覆盖面还很小。PapersWithCode 的共同创建者 Robert Stojnic 表示:「目前只有经过 OpenReview 同行评审且被 ReScience 接收的论文才能提供复现报告。」
希望未来 PapersWithCode 可以提供其网站上所有提交论文的复现报告。
从顶会到个人,复现努力一直进行
可复现性是科学领域长期关注的话题,更是机器学习社区的重点关注问题。为了解决论文可复现难题,从顶会到个人一直都在努力。
NeurIPS 组委会从 2019 年起就鼓励论文作者提交代码(非强制),目前成效显著。在 NeurIPS 2019 的最后提交阶段,有 75% 的被接收论文附带了代码。随后,NeuIPS 将代码提交从「鼓励」变成了「强烈建议」(仍不强制),还提供了提交代码的准则和模板。
2020 年底,机器学习资源网站 Papers with Code 宣布与论文预印本平台 arXiv 进行合作,论文作者在 arXiv 上上传论文时可以同步上传官方和社区代码。
此外,AAAI Fellow、加拿大计算机科学家 Joelle Pineau 教授创建了「机器学习可复现性调查表」,这个清单为如何使其他研究人员清楚并重现机器学习论文的描述、代码和数据提供了明确的指导原则。
网站地址:https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
这些措施有助于解决论文可复现性问题,并进一步促进开放性科学研究的发展。
参考链接:https://paperswithcode.com/rc2020
如果对你有帮助。
请不吝点赞,点在看,谢谢
以上是关于预印本arziv上能发中文论文吗? 还有,都是几天审核通过?发上去的论文是显示投稿的时间是吗?的主要内容,如果未能解决你的问题,请参考以下文章