机器学习回归决策树算法

Posted 赵广陆

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了机器学习回归决策树算法相关的知识,希望对你有一定的参考价值。

目录


1 原理概述

前面已经讲到,关于数据类型,我们主要可以把其分为两类,连续型数据和离散型数据。在面对不同数据时,决策树也可以分为两大类型:

  • 分类决策树和回归决策树。
  • 前者主要用于处理离散型数据,后者主要用于处理连续型数据。

不管是回归决策树还是分类决策树,都会存在两个核心问题:

  • 如何选择划分点?
  • 如何决定叶节点的输出值?

一个回归树对应着输入空间(即特征空间)的一个划分以及在划分单元上的输出值。分类树中,我们采用信息论中的方法,通过计算选择最佳划分点。

而在回归树中,采用的是启发式的方法。**假如我们有n个特征,每个特征有[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-qVtgkYjg-1664890813135)(https://tva1.sinaimg.cn/large/007S8ZIlly1gffer61u9zj307i024glh.jpg)]个取值,那我们遍历所有特征,尝试该特征所有取值,对空间进行划分,直到取到特征 j 的取值 s,使得损失函数最小,这样就得到了一个划分点。**描述该过程的公式如下:

假设将输入空间划分为M个单元:R_1,R_2,…,R_mR1,R2,…,R**m 那么每个区域的输出值就是:c_m=avg(y_i|x_i\\in R_m)c**m=avg(y**ix**iR**m)也就是该区域内所有点y值的平均数。

举例:

如下图,假如我们想要对楼内居民的年龄进行回归,将楼划分为3个区域R1,R2,R3(红线),

那么R1的输出就是第一列四个居民年龄的平均值,

R2的输出就是第二列四个居民年龄的平均值,

R3的输出就是第三、四列八个居民年龄的平均值。

2 算法描述

  • 输入:训练数据集D:
  • 输出:回归树f(x).
  • 在训练数据集所在的输入空间中,递归的将每个区域划分为两个子区域并决定每个子区域上的输出值,构建二叉决策树:
    • (1)选择最优切分特征j与切分点s,求解遍历特征j,对固定的切分特征j扫描切分点s,选择使得上式达到最小值的对 (j,s).
    • (2)用选定的对(j,s)划分区域并决定相应的输出值:
    • (3)继续对两个子区域调用步骤(1)和(2),直至满足停止条件。
    • (4)将输入空间划分为M个区域R1,R2,……,Rm, 生成决策树:

3 简单实例

为了易于理解,接下来通过一个简单实例加深对回归决策树的理解。

训练数据见下表,目标是得到一棵最小二乘回归树。

x12345678910
y5.565.75.916.46.87.058.98.799.05

3.1 实例计算过程

(1)选择最优的切分特征j与最优切分点s:

  • 确定第一个问题:选择最优切分特征:
    • 在本数据集中,只有一个特征,因此最优切分特征自然是x。
  • 确定第二个问题:我们考虑9个切分点 [1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5] 。
    • 损失函数定义为平方损失函数:Loss(y,f(x))=(f(x)-y)^2Los**s(y,f(x))=(f(x)−y)2
    • 将上述9个切分点依此代入下面的公式,其中 c_m=avg(yi|xi\\in R_m)c**m=avg(y**ix**iR**m)

a、计算子区域输出值:

例如,取 s=1.5。此时R1=1,R2=2,3,4,5,6,7,8,9,10R1=1,R2=2,3,4,5,6,7,8,9,10,这两个区域的输出值分别为:

  • c1=5.56c1=5.56
  • c2=(5.7+5.91+6.4+6.8+7.05+8.9+8.7+9+9.05)/9=7.50c2=(5.7+5.91+6.4+6.8+7.05+8.9+8.7+9+9.05)/9=7.50

同理,得到其他各切分点的子区域输出值,如下表:

s1.52.53.54.55.56.57.58.59.5
c15.565.635.725.896.076.246.626.887.11
c27.57.737.998.258.548.918.929.039.05

b、计算损失函数值,找到最优切分点:

把c1,c2的值代入到同平方损失函数:Loss(y,f(x))=(f(x)-y)^2Los**s(y,f(x))=(f(x)−y)2

当s=1.5时,

同理,计算得到其他各切分点的损失函数值,可获得下表:

s1.52.53.54.55.56.57.58.59.5
m(s)15.7212.078.365.783.911.938.0111.7315.74

显然取 s=6.5时,m(s)最小。因此,第一个划分变量【j=x,s=6.5】

(2)用选定的(j,s)划分区域,并决定输出值;

  • 两个区域分别是:R1=1,2,3,4,5,6,R2=7,8,9,10R1=1,2,3,4,5,6,R2=7,8,9,10
  • 输出值c_m=avg(yi|xi\\in Rm),c1=6.24,c2=8.91c**m=avg(y**ix**iR**m),c1=6.24,c2=8.91

(3)调用步骤 (1)、(2),继续划分:

对R1继续进行划分:

x123456
y5.565.75.916.46.87.05

取切分点[1.5,2.5,3.5,4.5,5.5],则各区域的输出值c如下表:

s1.52.53.54.55.5
c15.565.635.725.896.07
c26.376.546.756.937.05

计算损失函数值m(s):

s1.52.53.54.55.5
m(s)1.30870.7540.27710.43681.0644

s=3.5时,m(s)最小。

(4)生成回归树

假设在生成3个区域之后停止划分,那么最终生成的回归树形式如下:

3.2 回归决策树和线性回归对比

import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeRegressor
from sklearn import linear_model

# 生成数据
x = np.array(list(range(1, 11))).reshape(-1, 1)
y = np.array([5.56, 5.70, 5.91, 6.40, 6.80, 7.05, 8.90, 8.70, 9.00, 9.05])

# 训练模型
model1 = DecisionTreeRegressor(max_depth=1)
model2 = DecisionTreeRegressor(max_depth=3)
model3 = linear_model.LinearRegression()
model1.fit(x, y)
model2.fit(x, y)
model3.fit(x, y)

# 模型预测
X_test = np.arange(0.0, 10.0, 0.01).reshape(-1, 1)  # 生成1000个数,用于预测模型
X_test.shape
y_1 = model1.predict(X_test)
y_2 = model2.predict(X_test)
y_3 = model3.predict(X_test)

# 结果可视化
plt.figure(figsize=(10, 6), dpi=100)
plt.scatter(x, y, label="data")
plt.plot(X_test, y_1,label="max_depth=1")
plt.plot(X_test, y_2, label="max_depth=3")
plt.plot(X_test, y_3, label='liner regression')

plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regression")
plt.legend()

plt.show()

结果展示


4 小结

  • 回归决策树算法总结【指导】

    • 输入:训练数据集D:

    • 输出:回归树f(x).

    • 流程:在训练数据集所在的输入空间中,递归的将每个区域划分为两个子区域并决定每个子区域上的输出值,构建二叉决策树

      • (1)选择最优切分特征j与切分点s,求解[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-17DSdMof-1664890813141)(https://tva1.sinaimg.cn/large/006y8mN6gy1g8wecce1fpj31am04wwez.jpg)]遍历特征j,对固定的切分特征j扫描切分点s,选择使得上式达到最小值的对(j,s).
      • (2)用选定的对(j,s)划分区域并决定相应的输出值:
      • (3)继续对两个子区域调用步骤(1)和(2),直至满足停止条件。
      • (4)将输入空间划分为M个区域R1,R2,……,Rm, 生成决策树:

以上是关于机器学习回归决策树算法的主要内容,如果未能解决你的问题,请参考以下文章

机器学习技法-决策树和CART分类回归树构建算法

机器学习算法决策树-5 CART回归树法,M5回归树算法对CART算法改进了什么

机器学习笔记之三CART 分类与回归树

基础|认识机器学习中的逻辑回归决策树神经网络算法

机器学习算法基础+实战系列决策树算法

机器学习回归决策树