[深度学习][原创]使用labelImg+yolov5完成所有slowfast时空动作检测项目-训练测试篇
Posted FL1623863129
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了[深度学习][原创]使用labelImg+yolov5完成所有slowfast时空动作检测项目-训练测试篇相关的知识,希望对你有一定的参考价值。
当我们准备好训练集和配置文件后就可以着手训练的事情了。首先安装好slowfast环境,然后打开源码,slowfast/configs/AVA/SLOWFAST_32x2_R50_SHORT.yaml作如下配置
TRAIN:
ENABLE: True
DATASET: ava
BATCH_SIZE: 4
EVAL_PERIOD: 5
CHECKPOINT_PERIOD: 1
AUTO_RESUME: True
# CHECKPOINT_FILE_PATH: /home/fut/Downloads/slowfast/pre-model/SLOWFAST_32x2_R101_50_50.pkl
CHECKPOINT_TYPE: caffe2
DATA:
NUM_FRAMES: 32
SAMPLING_RATE: 2
TRAIN_JITTER_SCALES: [256, 320]
TRAIN_CROP_SIZE: 224
TEST_CROP_SIZE: 224
INPUT_CHANNEL_NUM: [3, 3]
PATH_TO_DATA_DIR: './myava'
DETECTION:
ENABLE: True
ALIGNED: True
AVA:
FRAME_DIR: 'myava/frame'
FRAME_LIST_DIR: 'myava/frame_lists'
ANNOTATION_DIR: 'myava/annotations'
DETECTION_SCORE_THRESH: 0.8
TRAIN_PREDICT_BOX_LISTS: [
"ava_train_v2.2.csv",
"person_box_67091280_iou90/ava_detection_train_boxes_and_labels_include_negative_v2.2.csv",
]
TEST_PREDICT_BOX_LISTS: ["person_box_67091280_iou90/ava_detection_val_boxes_and_labels.csv"]
SLOWFAST:
ALPHA: 4
BETA_INV: 8
FUSION_CONV_CHANNEL_RATIO: 2
FUSION_KERNEL_SZ: 7
RESNET:
ZERO_INIT_FINAL_BN: True
WIDTH_PER_GROUP: 64
NUM_GROUPS: 1
DEPTH: 50
TRANS_FUNC: bottleneck_transform
STRIDE_1X1: False
NUM_BLOCK_TEMP_KERNEL: [[3, 3], [4, 4], [6, 6], [3, 3]]
SPATIAL_DILATIONS: [[1, 1], [1, 1], [1, 1], [2, 2]]
SPATIAL_STRIDES: [[1, 1], [2, 2], [2, 2], [1, 1]]
NONLOCAL:
LOCATION: [[[], []], [[], []], [[], []], [[], []]]
GROUP: [[1, 1], [1, 1], [1, 1], [1, 1]]
INSTANTIATION: dot_product
POOL: [[[1, 2, 2], [1, 2, 2]], [[1, 2, 2], [1, 2, 2]], [[1, 2, 2], [1, 2, 2]], [[1, 2, 2], [1, 2, 2]]]
BN:
USE_PRECISE_STATS: False
NUM_BATCHES_PRECISE: 200
SOLVER:
BASE_LR: 0.1
LR_POLICY: steps_with_relative_lrs
STEPS: [0, 10, 15, 20]
LRS: [1, 0.1, 0.01, 0.001]
MAX_EPOCH: 300
MOMENTUM: 0.9
WEIGHT_DECAY: 1e-7
WARMUP_EPOCHS: 5.0
WARMUP_START_LR: 0.000125
OPTIMIZING_METHOD: sgd
MODEL:
NUM_CLASSES: 2
ARCH: slowfast
MODEL_NAME: SlowFast
LOSS_FUNC: bce
DROPOUT_RATE: 0.5
HEAD_ACT: sigmoid
TEST:
ENABLE: True
DATASET: ava
BATCH_SIZE: 8
DATA_LOADER:
NUM_WORKERS: 2
PIN_MEMORY: True
NUM_GPUS: 4
NUM_SHARDS: 1
RNG_SEED: 0
OUTPUT_DIR: .
1 TRAIN:CHECKPOINT_FILE_PATH 就是我们下载的与训练模型的位置
2 DATA:PATH_TO_DATA_DIR 就是我们第二部分制作的数据集文件
3 AVA: 下面的路径也是对应第二部分数据集文件对应的地方
4 MODEL:NUM_CLASSES: 1 这里是最需要主义的,这里classes必需为2,因为我们有fight和person 2个分类。
开始训练:
python tools/run_net.py --cfg configs/AVA/SLOWFAST_32x2_R50_SHORT5.yaml
训练出来的模型文件在chekpoints文件里面,我截图看看
惊喜不?是pyth格式文件,后面我们开始测试模型效果
首先 新建slowfast/demo/AVA/SLOWFAST_32x2_R50_SHORT.yaml文件,写下面代码
TRAIN:
ENABLE: False
DATASET: ava
BATCH_SIZE: 1
EVAL_PERIOD: 1
CHECKPOINT_PERIOD: 1
AUTO_RESUME: True
CHECKPOINT_FILE_PATH: 'checkpoints/checkpoint_epoch_00140.pyth' #path to pretrain model
CHECKPOINT_TYPE: pytorch
DATA:
NUM_FRAMES: 16
SAMPLING_RATE: 2
TRAIN_JITTER_SCALES: [256, 320]
TRAIN_CROP_SIZE: 224
TEST_CROP_SIZE: 256
INPUT_CHANNEL_NUM: [3, 3]
DETECTION:
ENABLE: True
ALIGNED: False
AVA:
BGR: False
DETECTION_SCORE_THRESH: 0.8
TEST_PREDICT_BOX_LISTS: ["person_box_67091280_iou90/ava_detection_val_boxes_and_labels.csv"]
SLOWFAST:
ALPHA: 4
BETA_INV: 8
FUSION_CONV_CHANNEL_RATIO: 2
FUSION_KERNEL_SZ: 5
RESNET:
ZERO_INIT_FINAL_BN: True
WIDTH_PER_GROUP: 64
NUM_GROUPS: 1
DEPTH: 101
TRANS_FUNC: bottleneck_transform
STRIDE_1X1: False
NUM_BLOCK_TEMP_KERNEL: [[3, 3], [4, 4], [6, 6], [3, 3]]
SPATIAL_DILATIONS: [[1, 1], [1, 1], [1, 1], [2, 2]]
SPATIAL_STRIDES: [[1, 1], [2, 2], [2, 2], [1, 1]]
NONLOCAL:
LOCATION: [[[], []], [[], []], [[6, 13, 20], []], [[], []]]
GROUP: [[1, 1], [1, 1], [1, 1], [1, 1]]
INSTANTIATION: dot_product
POOL: [[[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]]]
BN:
USE_PRECISE_STATS: False
NUM_BATCHES_PRECISE: 200
SOLVER:
MOMENTUM: 0.9
WEIGHT_DECAY: 1e-7
OPTIMIZING_METHOD: sgd
MODEL:
NUM_CLASSES: 1
ARCH: slowfast
MODEL_NAME: SlowFast
LOSS_FUNC: bce
DROPOUT_RATE: 0.5
HEAD_ACT: sigmoid
TEST:
ENABLE: False
DATASET: ava
BATCH_SIZE: 1
DATA_LOADER:
NUM_WORKERS: 2
PIN_MEMORY: True
NUM_GPUS: 1
NUM_SHARDS: 1
RNG_SEED: 0
OUTPUT_DIR: .
#TENSORBOARD:
# MODEL_VIS:
# TOPK: 2
DEMO:
ENABLE: True
LABEL_FILE_PATH: "myava/annotations/myava.json"
INPUT_VIDEO: "myava/videos/fight1.mp4"
OUTPUT_FILE: "myava/fight1_out.mp4"
DETECTRON2_CFG: "COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml"
DETECTRON2_WEIGHTS: detectron2://COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl
由于我的显存6GB老是out of memory于是设置NUM_FRAMES为16,如果你显存够可以设置32,这个是默认值。
测试开始:
python tools/run_net.py --cfg demo/AVA/SLOWFAST_32x2_R50_SHORT.yaml
稍等一会结果就出来了。最终效果还可以。
以上是关于[深度学习][原创]使用labelImg+yolov5完成所有slowfast时空动作检测项目-训练测试篇的主要内容,如果未能解决你的问题,请参考以下文章
[深度学习][原创]使用labelImg+yolov5完成所有slowfast时空动作检测项目-训练测试篇
[深度学习][原创]使用labelImg+yolov5完成所有slowfast时空动作检测项目-配置文件篇
[深度学习][原创]使用labelImg+yolov5完成所有slowfast时空动作检测项目-开山篇