python QUANTOPIAN MSMP 6.00
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python QUANTOPIAN MSMP 6.00相关的知识,希望对你有一定的参考价值。
"""
MSMP v6.00 Major Upgrade
- single RS momentum portfolio with downside protection
- RAA - Robust Asset Allocation (4 portfolios)
- minimumn correlation strategy
- downside protection strategy based on Alpha Architect DPM Rule: 50% TMOM, 50% MA
- RS with downside protection, single portfolio, EtfReplay-like ranking formula
- RS with 2 portfolios based on EtfReplay ranking model
- EAA - Elastic Asset Allocation
- multiple strategies, equally weighted
- 2 regimes: riskon riskoff RS
- Adaptive Asset Allocation
- PAA - Protective Aseet Allocation
- BRS - Bond Rotation Strategy
"""
# IMPORTS
#
import datetime as dt
import pytz
import numpy as np
import pandas as pd
import math
import talib
import re
from collections import OrderedDict
from cvxopt import matrix, solvers, spdiag
import scipy
########################################
GTC_LIMIT = 10
VALID_PORTFOLIO_ALLOCATION_MODES = ['EW', 'FIXED', 'PROPORTIONAL', 'MIN_VARIANCE', 'MAX_SHARPE',
'BY_FORMULA', 'RISK_PARITY', 'VOLATILITY_WEIGHTED', 'RISK_TARGET',
'MIN_CORRELATION']
VALID_STRATEGY_ALLOCATION_MODES = ['EW', 'FIXED', 'MIN_VARIANCE', 'MAX_SHARPE', 'BRUTE_FORCE_SHARPE',
'BY_FORMULA', 'RISK_PARITY', 'VOLATILITY_WEIGHTED', 'RISK_TARGET', 'MIN_CORRELATION']
VALID_PORTFOLIO_ALLOCATION_FORMULAS = [None]
VALID_SECURITY_SCORING_METHODS = [None, 'RS', 'EAA']
VALID_PORTFOLIO_SCORING_METHODS = [None, 'RS']
VALID_PROTECTION_MODES = [None, 'BY_RULE', 'RAA', 'BY_FORMULA']
VALID_PROTECTION_FORMULAS = [None, 'DPF']
VALID_ALGO_ALLOCATION_MODES = ['EW', 'FIXED', 'PROPORTIONAL', 'MIN_VARIANCE', 'MAX_SHARPE',
'BY_FORMULA', 'RISK_PARITY', 'VOLATILITY_WEIGHTED', 'RISK_TARGET', 'MIN_CORRELATION']
VALID_STRATEGY_ALLOCATION_FORMULAS = [None, 'PAA']
VALID_STRATEGY_ALLOCATION_RULES = [None]
NONE_NOT_ALLOWED = ['portfolios', 'portfolio_allocation_modes', 'cash_proxies', 'strategy_allocation_mode']
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
from talib import BBANDS, DEMA, EMA, HT_TRENDLINE, KAMA, MA, MAMA, MAVP, MIDPOINT, MIDPRICE, SAR, \
SAREXT, SMA, T3, TEMA, TRIMA, WMA, ADD, DIV, MAX, MAXINDEX, MIN, MININDEX, MINMAX, \
MINMAXINDEX, MULT, SUB, SUM, BETA, CORREL, LINEARREG, LINEARREG_ANGLE, \
LINEARREG_INTERCEPT, LINEARREG_SLOPE, STDDEV, TSF, VAR, ADX, ADXR, APO, AROON, \
AROONOSC, BOP, CCI, CMO, DX, MACD, MACDEXT, MACDFIX, MFI, MINUS_DI, MINUS_DM, MOM, \
PLUS_DI, PLUS_DM, PPO, ROC, ROCP, ROCR, ROCR100, RSI, STOCH, STOCHF, STOCHRSI, \
TRIX, ULTOSC, WILLR, ATR, NATR, TRANGE, ACOS, ASIN, ATAN, CEIL, COS, COSH, EXP, \
FLOOR, LN, LOG10, SIN, SINH, SQRT, TAN, TANH, AD, ADOSC, OBV, AVGPRICE, MEDPRICE, \
TYPPRICE, WCLPRICE, HT_DCPERIOD, HT_DCPHASE, HT_PHASOR, HT_SINE, HT_TRENDMODE
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
TALIB_FUNCTIONS = [BBANDS, DEMA, EMA, HT_TRENDLINE, KAMA, MA, MAMA, MAVP, MIDPOINT, MIDPRICE, SAR, \
SAREXT, SMA, T3, TEMA, TRIMA, WMA, ADD, DIV, MAX, MAXINDEX, MIN, MININDEX, MINMAX, \
MINMAXINDEX, MULT, SUB, SUM, BETA, CORREL, LINEARREG, LINEARREG_ANGLE, \
LINEARREG_INTERCEPT, LINEARREG_SLOPE, STDDEV, TSF, VAR, ADX, ADXR, APO, AROON, \
AROONOSC, BOP, CCI, CMO, DX, MACD, MACDEXT, MACDFIX, MFI, MINUS_DI, MINUS_DM, MOM, \
PLUS_DI, PLUS_DM, PPO, ROC, ROCP, ROCR, ROCR100, RSI, STOCH, STOCHF, STOCHRSI, TRIX, \
ULTOSC, WILLR, ATR, NATR, TRANGE, ACOS, ASIN, ATAN, CEIL, COS, COSH, EXP, FLOOR, LN, \
LOG10, SIN, SINH, SQRT, TAN, TANH, AD, ADOSC, OBV, AVGPRICE, MEDPRICE, TYPPRICE, \
WCLPRICE, HT_DCPERIOD, HT_DCPHASE, HT_PHASOR, HT_SINE, HT_TRENDMODE]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
class Algo():
def __init__(self, context, strategies=[], allocation_model=None,
scoring_model=None, regime=None):
if get_environment('platform') == 'zipline':
context.day_no = 0
self.ID = 'algo'
self.type = 'Algorithm'
self.strategies = strategies
self.allocation_model = allocation_model
self.regime = regime
context.strategies = self.strategies
context.max_lookback = self._compute_max_lookback(context)
log.info('MAX_LOOKBACK = {}'.format(context.max_lookback))
self.weights = [0. for s in self.strategies]
context.strategy_weights = self.weights
self.strategy_IDs = [s.ID for s in self.strategies]
self.active = [s.ID for s in self.strategies] + [p.ID for s in self.strategies for p in s.portfolios]
if self.allocation_model == None:
raise ValueError('\n *** FATAL ERROR : ALGO ALLOCATION MODEL CANNOT BE NONE ***\n')
context.prices = pd.Series()
context.returns = pd.Series()
context.log_returns = pd.Series()
context.covariances = dict()
context.sharpe_ratio = pd.Series()
self.all_assets = self._set_all_assets()
context.all_assets = self.all_assets[:]
self.allocations = pd.Series(0, index=context.all_assets)
self.previous_allocations = pd.Series(0, index=context.all_assets)
context.scoring_model = scoring_model
self.score = 0.
context.data = Data(self.all_assets)
# context.algo_data = context.data
set_symbol_lookup_date('2016-01-01')
self._instantiate_rules(context)
context.securities = [] # placeholder securities in portfolio
if get_environment('platform') == 'zipline':
context.count = context.max_lookback
else:
context.count = 0
self.rebalance_count = 1 # default rebalance interval = 1
self.first_time = True
return
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# looks for any 'lookback' kwargs
def _compute_max_lookback(self, context):
kwargs_list = self._get_all_kwargs(context)
for kwargs in kwargs_list:
if 'lookback' in kwargs:
lookback = kwargs['lookback']
try:
period = kwargs['period']
except:
period = 'D'
# add additional days to cater for 'sip_period'
if period == 'D':
lookback_days = 5 + lookback
elif period == 'W':
lookback_days = 6 + lookback * 5
elif period == 'M':
lookback_days = 25 + lookback * 25
else:
raise RuntimeError('UNKNOWN LOOKBACK PERIOD TYPE {} for strategy {}'.format(period, self.ID))
context.max_lookback = max(context.max_lookback, lookback_days)
return context.max_lookback
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _get_all_kwargs(self, context):
# creates a list of all kwargs containing 'lookback' labels
kwargs_list = self._get_portfolio_and_strategy_kwargs(context)
kwargs_list = kwargs_list + self._get_transform_kwargs(context)
return kwargs_list
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _get_portfolio_and_strategy_kwargs(self, context):
kwargs_list = []
for strategy in context.strategies:
kwargs_list = kwargs_list + [strategy.allocation_model.kwargs]
for pfolio in strategy.portfolios:
kwargs_list = kwargs_list + [pfolio.allocation_model.kwargs]
non_trivial_kwargs_list = [kwargs for kwargs in kwargs_list if kwargs not in [None, [], {}, [{}]]]
return non_trivial_kwargs_list
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _get_transform_kwargs(self, context):
kwargs_list = []
for transform in context.transforms:
if transform.kwargs not in [None, [], {}, [{}]]:
kwargs_list = kwargs_list + [transform.kwargs]
return kwargs_list
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _instantiate_rules(self, context):
context.rules = {}
for r in context.algo_rules:
context.rules[r.name] = r
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _set_all_assets(self):
all_assets = [s.all_assets for s in self.strategies]
self.all_assets = list(set([i for sublist in all_assets for i in sublist]))
return self.all_assets
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _allocate_assets(self, context):
log.debug('STRATEGY WEIGHTS = {}\n'.format(self.weights))
for i, s in enumerate(self.strategies):
self.allocations = self.allocations.add(self.weights[i] * s.allocations,
fill_value=0)
if self.allocations.sum() == 0:
# not enough price data yet
return self.allocations
# if 1. - sum(self.allocations) > 1.e-15 :
# raise RuntimeError ('SUM OF ALLOCATIONS = {} - SHOULD ALWAYS BE 1'.format(sum(self.allocations)))
return self.allocations
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def check_signal_trigger(self, context, data):
holdings = context.portfolio.positions
if self.first_time or context.rules['rebalance_rule'].apply_rule(context)[holdings].any():
# force rebalance
self.rebalance(context, data)
self.first_time = False
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def rebalance(self, context, data):
# make sure there's algo data
if not isinstance(context.algo_data, dict):
return
elif not self.first_time:
if self.rebalance_count != context.rebalance_interval:
self.rebalance_count += 1
return
self.first_time = False
self.rebalance_count = 1
log.info('----------------------------------------------------------------------------')
self.allocations = pd.Series(0., index=context.all_assets)
self.elligible = pd.Index(self.strategy_IDs)
# if self.scoring_model != None:
# self.scoring_model.caller = self
# context.symbols = self.strategy_IDs[:]
# self.score = self.scoring_model.compute_score (context)
# self.elligible = self.scoring_model.apply_ntop ()
self.allocation_model.caller = self
if self.regime == None:
self._get_strategy_and_portfolio_allocations(context)
else:
self._check_for_regime_change_and_set_active(context)
self.weights = self.allocation_model.get_weights(context)
self.allocations = self._allocate_assets(context)
self._execute_orders(context, data)
return self.allocations
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _get_strategy_and_portfolio_allocations(self, context):
for s_no, s in enumerate(self.strategies):
s.allocations = pd.Series(0., index=s.all_assets)
for p_no, p in enumerate(s.portfolios):
p.allocations = pd.Series(0., index=p.all_assets)
p.allocations = p.reallocate(context)
s.allocations = s.reallocate(context)
return
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _check_for_regime_change_and_set_active(self, context):
self.current_regime = self.regime.get_current(context)
log.debug('REGIME : {} \n'.format(self.current_regime))
if self.regime.detect_change(context):
self.regime.set_new_regime()
self.active = self.regime.get_active()
else:
log.info('REGIME UNCHANGED. JUST REBALANCE\n')
return
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _execute_orders(self, context, data):
for security in self.allocations.index:
if context.portfolio.positions[security].amount > 0 and self.allocations[security] == 0:
order_target_percent(security, 0)
elif self.allocations[security] != 0:
if get_open_orders(security):
continue
current_value = context.portfolio.positions[security].amount * data.current(security, 'price')
portfolio_value = context.portfolio.portfolio_value
if portfolio_value == 0: # before first purchases
portfolio_value = context.account.available_funds
target_value = portfolio_value * self.allocations[security]
if np.abs(target_value / current_value - 1) < context.threshold:
continue
order_target_percent(security, self.allocations[security] * context.leverage)
qty = int(
context.account.net_liquidation * self.allocations[security] / data.current(security, 'price'))
log.debug('ORDERING {} : {}% QTY = {}'.format(security.symbol,
self.allocations[security] * 100, qty))
context.gtc_count = GTC_LIMIT
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def check_for_unfilled_orders(self, context, data):
unfilled = {o.sid: o.amount - o.filled for oo in get_open_orders() for o in get_open_orders(oo)}
context.outstanding = {u: unfilled[u] for u in unfilled if unfilled[u] != 0}
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def fill_outstanding_orders(self, context, data):
if context.outstanding == {}:
context.show_positions = False
return
elif context.gtc_count > 0:
for s in context.outstanding:
order(s, context.outstanding[s])
log.debug('ORDER {} OUTSTANDING {} SHARES'.format(context.outstanding[s], s.symbol))
context.gtc_count -= 1
else:
log.info('GTC_COUNT EXPIRED')
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def show_records(self, context, data):
record('LEVERAGE', context.account.leverage)
# record('CONTEXT_LEVERAGE', context.leverage)
# record('PV', context.account.total_positions_value)
# record('PV1',context.portfolio.positions_value)
# record('TOTAL', context.portfolio.portfolio_value)
# record('CASH', context.portfolio.cash)
# for s in context.strategies:
# # record(s.ID + '_prices', s.prices.iloc[-1])
# for p in s.portfolios:
# record(p.ID + '_prices', p..ilocprices[-1])
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def show_positions(self, context, data):
if context.portfolio.positions == {}:
return
log.info('\nPOSITIONS\n')
for asset in self.all_assets:
if context.portfolio.positions[asset].amount > 0:
log.info(
'{0} : QTY = {1}, COST BASIS {2:3.2f}, CASH = {3:7.2f}, POSITIONS VALUE = {4:7.2f}, TOTAL = {5:7.2f}'
.format(asset.symbol, context.portfolio.positions[asset].amount,
context.portfolio.positions[asset].cost_basis,
context.portfolio.cash,
context.portfolio.positions[asset].amount * data.current(asset, 'price'),
context.portfolio.portfolio_value))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
class Strategy():
def __init__(self, context, ID='', portfolios=[], allocation_model=None,
scoring_model=None):
self.ID = ID
self.type = 'Strategy'
self.portfolios = portfolios
self.portfolio_IDs = [p.ID for p in self.portfolios]
self.weights = [0. for p in portfolios]
self.prices = pd.Series()
self.returns = pd.Series()
self.covariances = dict()
self.sharpe_ratio = pd.Series()
if allocation_model == None:
self.allocation_model = AllocationModel(context, mode='EW')
else:
self.allocation_model = allocation_model
self.scoring_model = scoring_model
self.score = 0.
self._set_all_assets()
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _set_all_assets(self):
all_assets = [p.all_assets for p in self.portfolios]
self.all_assets = set([i for sublist in all_assets for i in sublist])
return self.all_assets
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def allocate_assets(self, context):
self.allocations = pd.Series(0., index=self.all_assets)
log.debug('STRATEGY {} PORTFOLIO WEIGHTS = {}\n'.format(self.ID, [round(w, 2) for w in self.weights]))
for i, p in enumerate(self.portfolios):
self.allocations = self.allocations.add(self.weights[i] * p.allocations,
fill_value=0)
log.debug('SECURITY ALLOCATIONS for {} \n{}\n'.format(self.ID, self.allocations.round(2)))
return self.allocations
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def reallocate(self, context):
self.elligible = pd.Index(self.portfolio_IDs)
if self.scoring_model != None:
self.scoring_model.caller = self
context.symbols = self.portfolio_IDs[:]
self.score = self.scoring_model.compute_score(context)
self.elligible = self.scoring_model.apply_ntop()
self.allocation_model.caller = self
self.weights = self.allocation_model.get_weights(context)
self.allocations = self.allocate_assets(context)
self.holdings = (self.allocations * context.portfolio.portfolio_value).divide(
context.algo_data['price'][self.all_assets]).round(0)
return self.allocations
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
class Portfolio():
def __init__(self, context, ID='',
securities=[], allocation_model=None,
scoring_model=None,
downside_protection_model=None,
cash_proxy=None, allow_shorts=False):
self.ID = ID
self.type = 'Portfolio'
self.securities = securities
self.weights = [0. for s in securities]
self.allocation_model = allocation_model
self.scoring_model = scoring_model
self.score = 0.
self.downside_protection_model = downside_protection_model
if cash_proxy == None:
log.info('NO CASH_PROXY SPECIFIED FOR PORTFOLIO {}'.format(self.ID))
raise ValueError('INITIALIZATION ERROR')
self.cash_proxy = cash_proxy
self.prices = pd.Series()
self.returns = pd.Series()
self.covariances = dict()
self.sharpe_ratios = pd.Series()
for s in [context.market_proxy, self.cash_proxy, context.risk_free]:
if s in self.securities:
log.warn('{} is included in the portfolio'.format(s.symbol))
self.all_assets = list(set(self.securities + [context.market_proxy, self.cash_proxy, context.risk_free]))
self.allocations = pd.Series([0.0] * len(self.all_assets), index=self.all_assets)
return
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def reallocate(self, context):
self.allocations = pd.Series(0., index=self.all_assets)
self.elligible = pd.Index(self.securities)
if self.scoring_model != None:
self.scoring_model.caller = self
context.symbols = self.securities[:]
self.score = self.scoring_model.compute_score(context)
self.elligible = self.scoring_model.apply_ntop()
self.allocation_model.caller = self
self.weights = self.allocation_model.get_weights(context)
self.allocations[self.elligible] = self.weights
log.debug('ALLOCATIONS FOR {} : {}\n'.format(self.ID,
[(self.allocations.index[i].symbol, round(v, 2))
for i, v in enumerate(self.allocations)
if v > 0]))
if self.downside_protection_model != None:
self.downside_protection_model.caller = self
self.allocations = self.downside_protection_model.apply_protection(context,
self.allocations,
self.cash_proxy,
[self.securities, self.score])
log.debug('AFTER DOWNSIDE PROTECTION {} : {}\n'.format(self.ID,
[(self.allocations.index[i].symbol, round(v, 2))
for i, v in enumerate(self.allocations)
if v > 0]))
self.holdings = (self.allocations * context.portfolio.portfolio_value).divide(
context.algo_data['price'][self.all_assets]).round(0)
return self.allocations
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
class Regime():
def __init__(self, transitions):
"""Initialize Regime object. Set init state and transition table."""
self.transitions = transitions
# set current != new to always detect change on first reallocation
self.current_regime = 0
self.new_regime = 1
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def detect_change(self, context):
self.new_regime = self.get_current(context)
return [False if self.current_regime == self.new_regime else True][0]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def get_current(self, context):
for k in self.transitions.keys():
rule_name = self.transitions[k][0]
rule = context.rules[rule_name]
if rule.apply_rule(context):
return k
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def set_new_regime(self):
self.current_regime = self.new_regime
record('REGIME', self.current_regime)
return self.current_regime
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def get_active(self):
return self.transitions[self.current_regime][1]
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
class Data():
def __init__(self, assets):
self.all_assets = assets
# self.fallbacks = {'EDV' : symbol('TLT')}
return
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def update(self, context, data):
''' generates context.raw_data (dictionary of context.max_lookback values) and context.algo_data (dictioanary current values) for 'high', 'open', 'low', 'close', 'volume', 'price' and all transforms '''
# dataframe for each of 'high', 'open', 'low', 'close', 'volume', 'price'
context.raw_data = self.get_raw_data(context, data)
# log.info ('\n{} GENERATING ALGO_DATA...'.format(get_datetime().date()))
# add a dataframe for each transform
context.raw_data = self.generate_frame_for_each_transform(context, data)
# only need the current value for each security (Series)
context.algo_data = self.current_algo_data(context, data)
return context.algo_data
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def get_tradeable_assets(self, data):
tradeable_assets = [asset for asset in self.all_assets if data.can_trade(asset)]
if len(self.all_assets) > len(tradeable_assets):
non_tradeable = [s.symbol for s in self.all_assets if data.can_trade(s) == False]
log.error('*** FATAL ERROR : MISSING DATA for securities {}'.format(non_tradeable))
raise ValueError('FATAL ERROR: SEE LOG FOR MISSING DATA')
return tradeable_assets
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def get_raw_data(self, context, data):
context.raw_data = dict()
tradeable_assets = self.get_tradeable_assets(data)
for item in ['high', 'open', 'low', 'close', 'volume', 'price']:
try:
context.raw_data[item] = data.history(tradeable_assets, item, context.max_lookback, '1d')
except:
log.warn('FATAL ERROR: UNABLE TO LOAD HISTORY DATA FOR {}'.format(item))
# force exit
raise ValueError(' *** FATAL ERROR : INSUFFICIENT DATA - SEE LOG *** ')
if np.isnan(context.raw_data[item].values).any():
# log.warn ('\n WARNING : THERE ARE NaNs IN THE DATA FOR {} \n FILL BACKWARDS.......'
# .format([k.symbol for k in context.raw_data[item].keys() if
# np.isnan(context.raw_data[item][k][0])]))
context.raw_data[item] = context.raw_data[item].bfill()
return context.raw_data
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def generate_frame_for_each_transform(self, context, data):
for transform in context.transforms:
# result = apply_transform(context, transform)
result = transform.apply_transform(context)
outputs = transform.outputs
if type(result) == pd.Panel:
context.raw_data.update(dict([(o, result[o]) for o in outputs]))
elif type(result) == pd.DataFrame:
context.raw_data[outputs[0]] = result
else:
log.error('\n INVALID TRANSFORM RESULT\n')
return context.raw_data
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def current_algo_data(self, context, data):
context.algo_data = dict()
for k in [key for key in context.raw_data.keys()
if type(context.raw_data[key]) == pd.DataFrame]:
context.algo_data[k] = context.raw_data[k].ix[-1]
if np.isnan(context.algo_data[k].values).any():
security = [s.symbol for s in context.raw_data[k].ix[-1].index
if np.isnan(context.raw_data[k][s].ix[-1])][0]
log.warn('*** WARNING: FOR ITEM {} THERE IS A NAN IN THE DATA FOR {}'.format(k, security))
return context.algo_data
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# prices are NOMINAL prices used for individual portfolio/strategy variance/cov calculations
def update_portfolio_and_strategy_metrics(self, context, data):
for s_no, s in enumerate(context.strategies):
self._update_strategy_metrics(context, data, s, s_no)
self._update_portfolio_metrics(context, data, s)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _update_strategy_metrics(self, context, data, s, s_no):
''' calculate and store current price of strategies used by algo '''
strategy_price = s.holdings.multiply(context.algo_data['price'][s.all_assets]).sum()
s.prices[get_datetime()] = strategy_price
s.sharpe_ratio[get_datetime()] = self._calculate_sharpe_ratio(context, data, s)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _update_portfolio_metrics(self, context, data, s):
for p_no, p in enumerate(s.portfolios):
portfolio_price = p.holdings.multiply(context.algo_data['price'][p.all_assets]).sum()
p.prices[get_datetime()] = portfolio_price
p.sharpe_ratios[get_datetime()] = self._calculate_sharpe_ratio(context, data, p)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _calculate_sharpe_ratio(self, context, data, s_or_p):
if len(s_or_p.prices) <= context.SR_lookback:
# not enought data yet
return 0
rets = s_or_p.prices.pct_change()[-context.SR_lookback:]
# s_or_p_rets = (rets * s_or_p.allocation_model.weights).sum(axis=1)[-context.SR_lookback:]
risk_free_rets = data.history(context.risk_free, 'price', context.SR_lookback, '1d').pct_change()
excess_returns = rets[1:].values - risk_free_rets[1:].values
return excess_returns.mean() / rets.std()
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
class ScoringModel():
def __init__(self, context, factors=None, method=None, n_top=1):
self.factors = factors
self.method = method
if self.factors == None:
raise ValueError('Unable to score model with no factors')
# if self.method == None :
# raise ValueError ('Unable to score model with no method')
self.n_top = n_top
self.score = 0
self.methods = {'RS': self._relative_strength,
'EAA': self._eaa
}
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def compute_score(self, context):
self.symbols = context.symbols
self.score = self.methods[self.method](context)
# log.debug ('\nSCORE\n\n{}\n'.format(self.score))
return self.score
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _relative_strength(self, context):
self.score = 0.
for name in self.factors.keys():
if np.isnan(context.algo_data[name[1:]][self.symbols]).any():
if isinstance(self.symbols[0], str):
sym = [(self.symbols[s], v)
for s, v in enumerate(context.algo_data[name[1:]][self.symbols]) if np.isnan(v)][0][0]
else:
sym = [(self.symbols[s].symbol, v)
for s, v in enumerate(context.algo_data[name[1:]][self.symbols]) if np.isnan(v)][0][0]
print('SCORING ERROR : FACTOR {} VALUE FOR {} IS nan'.format(name, sym))
raise RuntimeError()
if name[0] == '+':
# log.debug('Values for factor {} :\n\{}\nRANKS : \n{}'.format(name[1:],
# [(s.symbol, context.algo_data[name[1:]][s]) for s in self.securities],
# [(s.symbol, context.algo_data[name[1:]][self.securities].rank(ascending=False)[s])
# for s in self.securities]))
try:
# highest value gets highest rank / score
self.score = self.score + context.algo_data[name[1:]][self.symbols].rank(ascending=True) \
* self.factors[name]
except:
raise RuntimeError(
'\n *** FATAL ERROR : UNABLE TO SCORE FACTOR {}. CHECK TRANSFORM & FACTOR DEFINITIONS\n'
.format(name[1:]))
elif name[0] == '-':
# log.debug('Values for factor {} :\n\{}\nRANKS : \n{}'.format(name[1:],
# [(s.symbol, context.algo_data[name[1:]][s]) for s in self.securities],
# [(s.symbol, context.algo_data[name[1:]][self.securities].rank(ascending=True)[s])
# for s in self.securities]))
try:
# lowest value gets highest rank /score
self.score = self.score + context.algo_data[name[1:]][self.symbols].rank(ascending=False) \
* self.factors[name]
except:
raise RuntimeError('\n UNABLE TO SCORE FACTOR {}. CHECK TRANSFORM & FACTOR DEFINITIONS\n'
.format(name[1:]))
# log.debug('Scores for factor {} :\n\n{}'.format(name[1:],
# [(s.symbol, self.score[s]) for s in self.securities]))
return self.score
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _eaa(self, context):
# only valid for securities, not portfolios or strategies (?)
if self.caller.type != 'Portfolio':
raise RuntimeError('SCORING MODEL EAA ONLY VALID FOR PORTFOLIO, NOT {}'.format(self.method))
# prices = data.history(self.securities, 'price', 280, '1d')
prices = context.raw_data['price'][self.symbols]
monthly_prices = prices.resample('M').last()[self.symbols]
monthly_returns = monthly_prices.pct_change().ix[-12:]
# nominal return correlation to equi-weight portfolio
N = len(self.symbols)
equal_weighted_index = monthly_returns.mean(axis=1)
C = pd.Series([0.0] * N, index=self.symbols)
for s in C.index:
C[s] = monthly_returns[s].corr(equal_weighted_index)
R = context.algo_data['R'][self.symbols]
V = monthly_returns.std()
# Apply factor weights
# wi ~ zi = ( ri^wR * (1-ci)^wC / vi^wV )^wS
wR = self.factors['R']
wC = self.factors['C']
wV = self.factors['V']
wS = self.factors['S']
eps = self.factors['eps']
# Generalized Momentum Score
self.score = ((R ** wR) * ((1 - C) ** wC) / (V ** wV)) ** (wS + eps)
return self.score
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def apply_ntop(self):
N = len(self.symbols)
if self.method == 'EAA':
self.n_top = min(np.ceil(N ** 0.5) + 1, N / 2)
elligible = self.score.sort_values().index[-self.n_top:]
else:
# best score gets lowest rank
ranks = self.score.rank(ascending=False, method='dense')
elligible = ranks[ranks <= self.n_top].index
return elligible
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
class AllocationModel():
def __init__(self, context, mode='EW', weights=None, rule=None, formula=None, kwargs={}):
self.mode = mode
self.formula = formula
self.weights = weights
self.rule = rule
self.kwargs = kwargs
self.modes = {'EW': self._equal_weight_allocation,
'FIXED': self._fixed_allocation,
'PROPORTIONAL': self._proportional_allocation,
'MIN_VARIANCE': self._min_variance_allocation,
'BRUTE_FORCE_SHARPE': self._brute_force_sharpe_allocation,
'MAX_SHARPE': self._max_sharpe_allocation,
'BY_FORMULA': self._allocation_by_formula,
'REGIME_EW': self.allocate_by_regime_EW,
'RISK_PARITY': self._risk_parity_allocation,
'VOLATILITY_WEIGHTED': self._volatility_weighted_allocation,
'RISK_TARGET': self._risk_targeted_allocation,
'MIN_CORRELATION': self._get_reduced_correlation_weights,
}
if mode not in self.modes.keys():
raise ValueError('UNKNOWN MODE "{}"'.format(mode))
self.caller = None # portfolio or strategy object calling the model
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def get_weights(self, context):
self.prices = self._get_caller_prices(context)
if self.mode not in ['EW', 'FIXED', 'PROPORTIONAL']:
# all other modes need prices for at least 'lookback' period
if self.kwargs is not None and 'lookback' in self.kwargs:
# unable to allocate weights until more than 'lookback' prices
if len(self.prices) <= self.kwargs['lookback']:
# default to 'EW' to be able to generate prices
self.caller_weights = [1. / len(self.caller.elligible) for i in self.caller.elligible]
return self.caller_weights
if self.mode.startswith('REGIME') and self.caller.ID != 'algo':
raise ValueError('ILLEGAL REGIME ALLOCATION : REGIME ALLOCATION MODEL ONLY ALLOWED AT ALGO LEVEL')
return self.modes[self.mode](context)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _get_caller_prices(self, context):
if self.caller.type == 'Portfolio':
prices = context.raw_data['price'][self.caller.elligible]
elif self.caller.type == 'Strategy':
# portfolio prices for portfolios in strategy
prices = self._get_strategy_prices(context)
elif self.caller.type == 'Algorithm':
# strategy prices for strategies in algorithm
prices = self._get_algo_prices(context)
return prices
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _get_strategy_prices(self, context):
prices_dict = OrderedDict({p.ID: p.prices for s in context.strategies for p in s.portfolios})
index = context.strategies[0].portfolios[0].prices.index
columns = [p.ID for s in context.strategies for p in s.portfolios]
return pd.DataFrame(prices_dict, index=index, columns=columns)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _get_algo_prices(self, context):
prices_dict = OrderedDict({s.ID: s.prices for s in context.strategies})
index = context.strategies[0].prices.index
columns = [s.ID for s in context.strategies]
return pd.DataFrame(prices_dict, index=index, columns=columns)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _equal_weight_allocation(self, context):
elligible = self.caller.elligible
if len(elligible) > 0:
self.caller.weights = [1. / len(elligible) for i in elligible]
return self.caller.weights
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _fixed_allocation(self, context):
# we are going to change these weights, so be careful to keep a copy!
self.caller.weights = self.caller.allocation_model.weights[:]
return self.caller.weights
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _proportional_allocation(self, context):
elligible = self.caller.elligible
score = self.caller.score
self.caller.weights = score[elligible] / score[elligible].sum()
return self.caller.weights
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _risk_parity_allocation(self, context):
lookback = self.kwargs['lookback']
prices = self.prices[-lookback:]
ret_log = np.log(1. + prices.pct_change())[1:]
hist_vol = ret_log.std(ddof=0)
adj_vol = 1. / hist_vol
self.caller.weights = adj_vol.div(adj_vol.sum(), axis=0)
return self.caller.weights
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _volatility_weighted_allocation(self, context):
elligible = self.caller.elligible
lookback = self.kwargs['lookback']
ret_log = np.log(1. + self.prices.pct_change())
hist_vol = ret_log.rolling(window=lookback, center=False).std()[elligible]
adj_vol = 1. / hist_vol
self.caller.weights = adj_vol.div(adj_vol.sum())
return self.caller.weights
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _risk_targeted_allocation(self, context):
lookback = self.kwargs['lookback']
target_risk = self.kwargs['target_risk']
shorts = self.kwargs['shorts']
prices = self.prices[self.caller.elligible][-lookback:]
sigma_mat = self._compute_covariance_matrix(prices)
mu_vec = self._compute_expected_returns(prices)
risk_free = context.raw_data['price'][context.risk_free].pct_change()[-lookback:].mean()
self.caller.weights = self._compute_target_risk_portfolio(mu_vec, sigma_mat,
target_risk=target_risk,
risk_free=risk_free,
shorts=shorts)[0]
return self.caller.weights
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _min_variance_allocation(self, context):
lookback = self.kwargs['lookback']
shorts = self.kwargs['shorts']
prices = self.prices[self.caller.elligible][-lookback:]
sigma_mat = self._compute_covariance_matrix(prices)
mu_vec = self._compute_expected_returns(prices)
self.caller.weights = self._compute_global_min_portfolio(mu_vec=mu_vec,
sigma_mat=sigma_mat,
shorts=shorts)[0]
return self.caller.weights
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _max_sharpe_allocation(self, context):
# calculate security weights for max sharpe portfolio
elligible = self.caller.elligible
lookback = self.kwargs['lookback']
shorts = self.kwargs['shorts']
prices = self.prices[elligible][-lookback:]
sigma_mat = self._compute_covariance_matrix(prices)
mu_vec = self._compute_expected_returns(prices)
risk_free = context.raw_data['price'][context.risk_free].pct_change()[-lookback:].mean()
self.caller.weights = self._compute_tangency_portfolio(mu_vec=mu_vec,
sigma_mat=sigma_mat,
risk_free=risk_free,
shorts=shorts)[0]
return self.caller.weights
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# this only works at strategy level
# it could feasibly work at algo level too
def _brute_force_sharpe_allocation(self, context):
if isinstance(self.caller, Strategy):
portfolio_SRs = [p.sharpe_ratios[-1] for p in self.caller.portfolios]
# select the portfolio(s) with the highest SR - could be more than 1
self.caller.weights = [1. if s == np.max(portfolio_SRs) else 0 for s in portfolio_SRs]
# in case there are more than 1, normalize
return self.caller.weights / np.sum(self.caller.weights)
else:
raise RuntimeError('BRUTE_FORCE_SHARPE_ALLOCATION ONLY WORKS AT STRATEGY LEVEL')
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _get_reduced_correlation_weights(self, context):
"""
Implementation of minimum correlation algorithm.
ref: http://cssanalytics.com/doc/MCA%20Paper.pdf
:Params:
:returns <Pandas DataFrame>:Timeseries of asset returns
:risk_adjusted <boolean>: If True, asset weights are scaled
by their standard deviations
"""
elligible = self.caller.elligible
lookback = self.kwargs['lookback']
risk_adjusted = self.kwargs['risk_adjusted']
prices = self.prices[elligible][-lookback:]
returns = prices.pct_change()[1:]
correlations = returns.corr()
adj_correlations = self._get_adjusted_cor_matrix(correlations)
initial_weights = adj_correlations.T.mean()
ranks = initial_weights.rank()
ranks /= ranks.sum()
weights = adj_correlations.dot(ranks)
weights /= weights.sum()
if risk_adjusted:
weights = weights / returns.std()
weights /= weights.sum()
return weights
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _get_adjusted_cor_matrix(self, cor):
values = cor.values.flatten()
mu = np.mean(values)
sigma = np.std(values)
distribution = scipy.stats.norm(mu, sigma)
return 1 - cor.apply(lambda x: distribution.cdf(x))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _allocation_by_formula(self, context):
# for Protective Asset Allocation (PAA), strategy assumed to have 2 portfolios
if self.formula == 'PAA':
if len(self.caller.elligible) != 2:
raise ValueError('Protective Asset Allocation (PAA) Srategy has {} Portfolio; must have 2')
else:
self.caller.allocations = self._allocate_by_PAA_formula(context)
return self.caller.allocations
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _allocate_by_PAA_formula(self, context):
try:
protection_factor = self.kwargs['protection_factor']
except:
raise RuntimeError(
'MISSING STRATEGY ALLOCATION KWARG "protection_factor" FOR STRATEGY {}'.format(self.caller.ID))
securities = self.caller.portfolios[0].securities
N = len(securities)
n = context.rules[self.rule].apply_rule(context)[securities].sum()
dpf = (N - n) / (N - protection_factor * n / 4.)
# log.debug ('For portfolio {}, n = {}, N = {}, dpf = {}'.format(self.caller.ID, n, N, dpf))
record('DPF', dpf)
self.caller.weights = [1. - dpf, dpf]
return self.caller.weights
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def allocate_by_regime_EW(self, context):
# log.debug('\nACTIVE : {} \n'.format(self.caller.active))
if self.caller.type != 'Algorithm':
raise RuntimeError('REGIME SWITCHING ONLY ALLOWED AT ALGO LEVEL')
self._reset_strategy_and_portfolio_weights(context)
for s in self.caller.strategies:
s.allocations = pd.Series(0, index=s.all_assets)
for p in s.portfolios:
if s.ID in self.caller.active:
p_weight = 1. / len(s.portfolios)
elif p.ID in self.caller.active:
p_weight = 1. / np.sum([1 if pfolio.ID in self.caller.active else 0 for pfolio in s.portfolios])
elif s.ID not in self.caller.active and p.ID not in self.caller.active:
continue
p.allocations = p.reallocate(context)
s.allocations = s.allocations.add(p_weight * p.allocations, fill_value=0)
active_strategies = set([s.ID for s in context.strategies
for p in s.portfolios if s.ID in self.caller.active
or p.ID in self.caller.active])
self.caller.weights = [1. / len(active_strategies) if s.ID in active_strategies else 0 for s in
context.strategies]
context.strategy_weights = self.caller.weights
return self.caller.weights
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _reset_strategy_and_portfolio_weights(self, context):
for s_no, s in enumerate(self.caller.strategies):
self.caller.weights[s_no] = 0
context.strategy_weights[s_no] = 0
for p_no, p in enumerate(s.portfolios):
s.weights[p_no] = 0
return
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _get_no_of_active_portfolios(self):
# Note : if strategy in active, all its portfolios are active
number = 0
for s in self.caller.strategies:
if s.ID in self.caller.active:
# all portfolios are active
for p in s.portfolios:
number += 1
for p in s.portfolios:
if p.ID in self.caller.active:
number += 1
return number
# Portfolio Helper Functions
# Functions:
# 1. compute_efficient_portfolio compute minimum variance portfolio
# subject to target return
# 2. compute_global_min_portfolio compute global minimum variance portfolio
# 3. compute_tangency_portfolio compute tangency portfolio
# 4. compute_efficient_frontier compute Markowitz bullet
# 5. compute_portfolio_mu compute portfolio expected return
# 6. compute_portfolio_sigma compute portfolio standard deviation
# 7. compute_covariance_matrix compute covariance matrix
# 8. compute_expected_returns compute expected returns vector
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _compute_covariance_matrix(self, prices):
# calculates the cov matrix for the period defined by prices
returns = np.log(1 + prices.pct_change())[1:]
excess_returns_matrix = returns - returns.mean()
return 1. / len(returns) * (excess_returns_matrix.T).dot(excess_returns_matrix)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _compute_expected_returns(self, prices):
mu_vec = np.log(1 + prices.pct_change(1))[1:].mean()
return mu_vec
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _compute_portfolio_mu(self, mu_vec, weights_vec):
if len(mu_vec) != len(weights_vec):
raise RuntimeError('mu_vec and weights_vec must have same length')
return mu_vec.T.dot(weights_vec)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _compute_portfolio_sigma(self, sigma_mat, weights_vec):
if len(sigma_mat) != len(sigma_mat.columns):
raise RuntimeError('sigma_mat must be square\nlen(sigma_mat) = {}\nlen(sigma_mat.columns) ={}'.
format(len(sigma_mat), len(sigma_mat.columns)))
return np.sqrt(weights_vec.T.dot(sigma_mat).dot(weights_vec))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _compute_efficient_portfolio(self, mu_vec, sigma_mat, target_return, shorts=True):
# compute minimum variance portfolio subject to target return
#
# inputs:
# mu_vec N x 1 DataFrame expected returns
# with index = asset names
# sigma_mat N x N DataFrame covariance matrix of returns
# with index = columns = asset names
# target_return scalar, target expected return
# shorts logical, allow shorts is TRUE
#
# output is portfolio object with the following elements
#
# mu_p portfolio expected return
# sig_p portfolio standard deviation
# weights N x 1 DataFrame vector of portfolio weights
# with index = asset names
# check for valid inputs
#
if len(mu_vec) != len(sigma_mat):
print("dimensions of mu_vec and sigma_mat do not match")
raise
if np.matrix([sigma_mat.ix[i][i] for i in range(len(sigma_mat))]).any() <= 0:
print('Covariance matrix not positive definite')
raise
#
# compute efficient portfolio
#
solvers.options['show_progress'] = False
P = 2 * matrix(sigma_mat.values)
q = matrix(0., (len(sigma_mat), 1))
G = spdiag([-1. for i in range(len(sigma_mat))])
A = matrix(1., (1, len(sigma_mat)))
A = matrix([A, matrix(mu_vec.T.values).T], (2, len(sigma_mat)))
b = matrix([1.0, target_return], (2, 1))
if shorts == True:
h = matrix(1., (len(sigma_mat), 1))
else:
h = matrix(0., (len(sigma_mat), 1))
# weights_vec = pd.DataFrame(np.array(solvers.qp(P, q, G, h, A, b)['x']),\
# sigma_mat.columns)
try:
weights_vec = pd.Series(list(solvers.qp(P, q, G, h, A, b)['x']), index=sigma_mat.columns)
except:
log.info('W A R N I N G : unable to compute optimal weights; setting to equal weights')
weights_vec = pd.Series(1. / len(sigma_mat), index=sigma_mat.columns)
#
# compute portfolio expected returns and variance
#
# print ('*** Debug ***\n_compute_efficient_portfolio:\nmu_vec:\n', self.mu_vec, '\nsigma_mat:\n',
# self.sigma_mat, '\nweights:\n', self.weights_vec )
weights_vec.index = mu_vec.index
mu_p = self._compute_portfolio_mu(mu_vec, weights_vec)
sigma_p = self._compute_portfolio_sigma(sigma_mat, weights_vec)
return weights_vec, mu_p, sigma_p
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _compute_global_min_portfolio(self, mu_vec, sigma_mat, shorts=True):
solvers.options['show_progress'] = False
P = 2 * matrix(sigma_mat.values)
q = matrix(0., (len(sigma_mat), 1))
G = spdiag([-1. for i in range(len(sigma_mat))])
A = matrix(1., (1, len(sigma_mat)))
b = matrix(1.0)
if shorts == True:
h = matrix(1., (len(sigma_mat), 1))
else:
h = matrix(0., (len(sigma_mat), 1))
# print ('\nP\n\n{}\n\nq\n\n{}\n\nG\n\n{}\n\nh\n\n{}\n\nA\n\n{}\n\nb\n\n{}\n\n'.format(P,q,G,h,A,b))
# weights_vec = pd.DataFrame(np.array(solvers.qp(P, q, G, h, A, b)['x']),\
# index=sigma_mat.columns)
weights_vec = pd.Series(list(solvers.qp(P, q, G, h, A, b)['x']), index=sigma_mat.columns)
#
# compute portfolio expected returns and variance
#
# print ('*** Debug ***\n_Global Min Portfolio:\nmu_vec:\n', mu_vec, '\nsigma_mat:\n',
# sigma_mat, '\nweights:\n', weights_vec)
mu_p = self._compute_portfolio_mu(mu_vec, weights_vec)
sigma_p = self._compute_portfolio_sigma(sigma_mat, weights_vec)
return weights_vec, mu_p, sigma_p
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _compute_efficient_frontier(self, mu_vec, sigma_mat, risk_free=0, points=100, shorts=True):
efficient_frontier = pd.DataFrame(index=range(points), dtype=object, columns=['mu_p', 'sig_p', 'sr_p', 'wts_p'])
gmin_wts, gmin_mu, gmin_sigma = self._compute_global_min_portfolio(mu_vec, sigma_mat, shorts=shorts)
xmax = mu_vec.max()
if shorts == True:
xmax = 2 * mu_vec.max()
for i, mu in enumerate(np.linspace(gmin_mu, xmax, points)):
w_vec, portfolio_mu, portfolio_sigma = self._compute_efficient_portfolio(mu_vec, sigma_mat, mu,
shorts=shorts)
efficient_frontier.ix[i]['mu_p'] = w_vec.dot(mu_vec)
efficient_frontier.ix[i]['sig_p'] = np.sqrt(w_vec.T.dot(sigma_mat.dot(w_vec)))
efficient_frontier.ix[i]['sr_p'] = (efficient_frontier.ix[i]['mu_p'] - risk_free) / \
efficient_frontier.ix[i]['sig_p']
efficient_frontier.ix[i]['wts_p'] = w_vec
return efficient_frontier
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _compute_tangency_portfolio(self, mu_vec, sigma_mat, risk_free=0, shorts=True):
efficient_frontier = self._compute_efficient_frontier(mu_vec, sigma_mat, risk_free, shorts=shorts)
index = efficient_frontier.index[efficient_frontier['sr_p'] == efficient_frontier['sr_p'].max()]
wts = efficient_frontier['wts_p'][index].values[0]
mu_p = efficient_frontier['mu_p'][index].values[0]
sigma_p = efficient_frontier['sig_p'][index].values[0]
sharpe_p = efficient_frontier['sr_p'][index].values[0]
return wts, mu_p, sigma_p, sharpe_p
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _compute_target_risk_portfolio(self, mu_vec, sigma_mat, target_risk, risk_free=0, shorts=True):
efficient_frontier = self._compute_efficient_frontier(mu_vec, sigma_mat, risk_free, shorts=shorts)
if efficient_frontier['sig_p'].max() <= target_risk:
log.warn('TARGET_RISK {} > EFFICIENT FRONTIER MAXIMUM {}; SETTING IT TO MAXIMUM'.
format(target_risk, efficient_frontier['sig_p'].max()))
index = len(efficient_frontier) - 1
elif efficient_frontier['sig_p'].min() >= target_risk:
log.warn('TARGET RISK {} < GLOBAL MINIMUM {}; SETTING IT TO GLOBAL MINIMUM'.
format(target_risk, efficient_frontier['sig_p'].max()))
index = 1
else:
index = efficient_frontier.index[efficient_frontier['sig_p'] >= target_risk][0]
wts = efficient_frontier['wts_p'][index]
mu_p = efficient_frontier['mu_p'][index]
sigma_p = efficient_frontier['sig_p'][index]
sharpe_p = efficient_frontier['sr_p'][index]
return wts, mu_p, sigma_p, sharpe_p
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
class DownsideProtectionModel():
def __init__(self, context, mode=None, rule=None, formula=None, *args):
self.mode = mode
self.rule = rule
self.formula = formula
self.args = args
self.modes = {'BY_RULE': self._by_rule,
'RAA': self._apply_RAA,
'BY_FORMULA': self._by_formula
}
self.caller = None # portfolio or strategy object calling the model
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def apply_protection(self, context, allocations, cash_proxy=None, *args):
# apply downside protection model to cash_proxy, if it fails, set cash_proxy to risk_free
if context.allow_cash_proxy_replacement:
if context.raw_data['price'][cash_proxy][-1] < context.algo_data['price'][-43:].mean():
cash_proxy = context.risk_free
new_allocations = self.modes[self.mode](context, allocations, cash_proxy, *args)
return new_allocations
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _by_rule(self, context, allocations, cash_proxy, *args):
try:
triggers = context.rules[self.rule].apply_rule(context)[allocations.index]
except:
raise RuntimeError('UNABLE TO APPLY RULE {} FOR {}'.format(self.rule, self.caller.ID))
new_allocations = pd.Series([0 if triggers[a] else allocations[a] for a in allocations.index],
index=allocations.index)
new_allocations[cash_proxy] = new_allocations[cash_proxy] + (1 - new_allocations.sum())
return new_allocations
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _apply_RAA(self, context, allocations, cash_proxy, *args):
excess_returns = context.algo_data['EMOM']
tmp1 = [0.5 if excess_returns[asset] > 0 else 0. for asset in allocations.index]
prices = context.algo_data['price']
MA = context.algo_data['smma']
tmp2 = [0.5 if prices[asset] > MA[asset] else 0. for asset in allocations.index]
dpf = pd.Series([x + y for x, y in zip(tmp1, tmp2)], index=allocations.index)
new_allocations = allocations * dpf
new_allocations[cash_proxy] = new_allocations[cash_proxy] + (1 - np.sum(new_allocations))
record('BOND EXPOSURE', new_allocations[cash_proxy])
return new_allocations
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _by_formula(self, context, allocations, cash_proxy, *args):
if self.formula == 'DPF':
try:
new_allocations = self._apply_DPF(context, allocations, cash_proxy, *args)
except:
raise ValueError('FORMULA "{}" DOES NOT EXIST OR ERROR CALCULATING FORMULA'.formmat(self.formula))
return new_allocations
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _apply_DPF(self, context, allocations, cash_proxy, *args):
securities = args[0][0]
N = len(securities)
try:
triggers = context.rules[self.rule].apply_rule(context)[securities]
except:
raise ValueError('UNABLE TO APPLY RULE {}'.format(self.rule))
num_neg = triggers[triggers == True].count()
dpf = float(num_neg) / N
log.info("DOWNSIDE PROTECTION FACTOR = {}".format(dpf))
new_allocations = (1. - dpf) * allocations
new_allocations[cash_proxy] += dpf
return new_allocations
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
class Rule():
functions = {'EQ': lambda x, y: x == y,
'LT': lambda x, y: x < y,
'GT': lambda x, y: x > y,
'LE': lambda x, y: x <= y,
'GE': lambda x, y: x >= y,
'NE': lambda x, y: x != y,
'AND': lambda x, y: x & y,
'OR': lambda x, y: x | y,
}
def __init__(self, context, name='', rule='', apply_to='all'):
self.name = name
# remove spaces
self.rule = rule.replace(' ', '')
self.temp = ''
self.apply_to = apply_to
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def apply_rule(self, context):
''' routine to evaluate a rule consisting of a string formatted as 'conditional [AND|OR conditional]'
where conditionals are logical expressions, pandas series of logical expressions
or pandas dataframes of logical expressions. Returns True or False,
pandas series of True/False or pandas dataframe of True/False respectively.
'''
if self.rule == 'always_true':
return True
self.temp = self._replace_operators(self.rule)
# get the first condition of the rule and evaluate it
condition, result, cjoin = self._get_next_conditional(context)
# log.debug ('result = {}'.format(result))
while cjoin != None:
# get the rest of the rule
self.temp = self.temp[len(condition) + len(cjoin):]
# get the next conditional of the rule and evaluate it
func = Rule.functions[cjoin]
condition, tmp_result, cjoin = self._get_next_conditional(context)
result = func(result, tmp_result)
# log.debug ('intermediate result = {}'.format(result))
# log.debug ('final result = {}'.format(result))
return result
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _get_next_conditional(self, context):
condition, cjoin = self._get_conditional(self.temp)
result = self._evaluate_condition(context, condition)
if self.apply_to != 'all':
result = result[self.apply_to]
return condition, result, cjoin
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _replace_operators(self, s):
''' to make it easy to find operators in the rule s, replace ['=', '>', '<', '>=', '<=', '!=', 'and', 'or']
with ['EQ', 'GT', 'LT', 'GE', 'LE', 'NE', 'AND', 'OR'] respectively
'''
s1 = s.replace('and', 'AND').replace('or', 'OR').replace('!=', 'NE').replace('<=', 'LE').replace('>=', 'GE')
s1 = s1.replace('=', 'EQ').replace('<', 'LT').replace('>', 'GT')
return s1
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _get_conditional(self, s):
''' routine to find first ocurrence of "AND" or "OR" in rule s. Returns
conditional to the left of AND/OR and either 'AND', 'OR' or None '''
pos_AND = [s.find('AND') if s.find('AND') != -1 else len(s)][0]
pos_OR = [s.find('OR') if s.find('OR') != -1 else len(s)][0]
condition, cjoin = [(s.split('AND')[0], 'AND') if pos_AND < pos_OR else (s.split('OR')[0], 'OR')][0]
if pos_AND == len(s) and pos_OR == len(s):
cjoin = None
return condition, cjoin
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _get_operator(self, condition):
'''routine to extract the operator and its position from the conditional expression
'''
for o in ['EQ', 'GT', 'LT', 'GE', 'LE', 'NE', 'AND', 'OR']:
if condition.find(o) > 0:
return o, condition.find(o)
raise ('UNKNOWN OPERATOR')
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _get_operand_value(self, context, operand):
if operand.startswith('('):
tuple_0 = operand[1:operand.find(',')].strip("'").strip('"')
tuple_1 = operand[operand.find(',') + 1:-1]
return context.algo_data[tuple_0][tuple_1]
if operand[0].isdigit() or operand.startswith('.') or operand.startswith('-'):
return float(operand)
elif isinstance(operand, str):
return context.algo_data[operand.strip("'").strip('"')]
else:
op = context.algo_data[operand[0]]
if operand[1] != None:
op = context.algo_data[operand[0].strip("'").strip('"')][operand[1]]
return op
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _evaluate_condition(self, context, condition):
operator, position = self._get_operator(condition)
x = self._get_operand_value(context, condition[:position])
y = self._get_operand_value(context, condition[position + 2:])
# log.debug ('x = {}, y = {}, operator = {}'.format(x, y, operator))
func = Rule.functions[operator]
return func(x, y)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
class Transform():
def __init__(self, context, name='', function='', inputs=[], kwargs={}, outputs=[]):
self.name = name
self.function = function
self.inputs = inputs
self.kwargs = kwargs
self.outputs = outputs
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def apply_transform(self, context):
# transform format [([<data_items>], function, <data_item>, args)]
context.dp = pd.Panel(context.raw_data)
if self.function in TALIB_FUNCTIONS:
return self._apply_talib_function(context)
elif self.function.__name__.startswith('roll') or self.function.__name__.startswith(
'expand') or self.function.__name__ == '<lambda>':
return self._apply_pandas_function(context)
else:
return self.function(self, context)
raise ValueError('UNKNOWN TRANSFORM {}'.format(self.function))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _apply_talib_function(self, context):
'''
Routine to apply transform to data provided as a pandas Panel.
Inputs:
dp: pandas dataPanel consisting of a DataFrame for each item in ['open', 'high', 'low', 'close', 'volume',
'price']; each DataFrame has column names = asset names
inputs : list of dp items to be used as inputs. If empty (=[]), routine will use default input
names from the talib function DOC string
function : talib function name (e.g. RSI, MACD, ADX etc.) - see list of imported functions above
output_names : list of names for the tranforms DataFrames
NOTE: names must be unique and there must be a name for each output (some transforms produce more than
one output e.g MACD produces 3 outputs)
args : empty list (=[]), in which case default values are obtained from talib function DOC string.
otherwise, custom parameters may be provided as a list of integers, the parameters matching
the FULL parameter list, as per the function DOC string
Outputs:
pandas DataPanel with new items (DataFrames) appended for each transform output.
'''
# parameters = [a for a in self.args]
parameters = [self.kwargs[key] for key in iter(self.kwargs)]
if parameters == []:
parameters = [int(s) for s in re.findall('\d+', self.function.__doc__)]
data_items = re.findall("(?<=\')\w+", self.function.__doc__)
if data_items == []:
inputs = self.inputs
else:
inputs = data_items
for output in self.outputs:
context.dp[output] = pd.DataFrame(0, index=context.dp.major_axis, columns=context.dp.minor_axis)
for asset in context.dp.minor_axis:
data = [context.dp.transpose(2, 1, 0)[asset][i].values for i in inputs]
args = data + parameters
transform = self.function(*args)
if len(transform) == len(self.outputs) or len(transform) > 3:
pass
else:
raise ValueError('** ERROR : must be output_names for each output')
if len(self.outputs) == 1:
context.dp[self.outputs[0]][asset] = transform
else:
for i, output in enumerate(self.outputs):
context.dp[output][asset] = transform[i]
# for some reason, if you don't do this, then dp.transpose(2,1,0) gives dp[output][asset] as 0 !!
for name in self.outputs:
context.dp[name] = context.dp[name]
return context.dp
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _apply_pandas_function(self, context):
'''
Routine to apply pandas function to column(s) of data provided as Pandas DataFrame.
Allowed functions include all the pandas.rolling_ and pandas.expanding_ functions.
NOTE: corr and cov are NOT allowed here, but must be implemented as CUSTOM FUNCTIONS
Inputs:
dp = Pandas DataPanel with data to be transformed in one (or more) panel items
NOTE: in the case of CORR or COV, columns contain price data for each stock.
inputs = name(s) of item(s) containing data to be transformed (DataFrames with columns = asset names)
function = name of pandas function provided by user (pd.rolling_ or pd.expanding_ )
args = list of arguments required by function
Output:
Pandas DataPanel with appended items containing the transformed data as DataFrames, or,
as in the case of CORR and COV functions, the item is a DataPanel of correlations/covariances
'''
if 'corr' in self.function.__name__ or 'cov' in self.function.__name__:
raise ValueError('** ERROR: Correlation and Covariance must be implemented as CUSTOM FUNCTIONS')
for asset in context.dp.minor_axis:
context.dp[self.outputs[0]] = self.function(context.dp[self.inputs[0]], *self.args)
return context.dp
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# Custom Transforms
def n_period_return(self, context):
'''
percentage return (optionally, excess return) over n periods
most recent period can optionally be skipped
kwargs[0] = 'no of periods'
kwargs[1] = 'period' : 'D'|'W'|'M' (day|week||month)
kwargs[2] = 'skip_period' (optional = False)
'''
try:
skip_period = self.kwargs['skip_period']
except:
skip_period = False
# TODO : need to return excess_return, depending on risk_free
prices = context.dp[self.inputs[0]]
no_of_periods = self.kwargs['lookback']
# if no 'period' kwarg, assume 'D'
try:
period = self.kwargs['period']
except:
period = 'D'
if period in ['W', 'M']:
returns = prices.resample(period).last().pct_change(no_of_periods)
elif period == 'D':
returns = prices.pct_change(no_of_periods)
idx = -1
if skip_period:
idx = - 2
df = pd.DataFrame(0, index=context.dp.major_axis,
columns=context.dp.minor_axis)
if not isinstance(context.risk_free, int):
returns = returns.sub(returns[context.risk_free], axis=0)
ds = returns.iloc[idx]
df.iloc[-1] = ds
context.dp[self.outputs[0]] = df
return context.dp
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def simple_mean_monthly_average(self, context):
h = context.dp[self.inputs[0]]
lookback = self.kwargs['lookback']
ds = h.resample('M').last()[-lookback - 1:-1].mean()
df = pd.DataFrame(0, index=h.index, columns=h.columns)
df.iloc[-1] = ds
context.dp[self.outputs[0]] = df
return context.dp
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def momentum(self, context):
lookback = self.kwargs['lookback']
ds = context.dp[self.inputs[0]].iloc[-1] / context.dp[self.inputs[0]].iloc[-lookback] - 1
df = pd.DataFrame(0, index=context.dp.major_axis, columns=context.dp.minor_axis)
df.iloc[-1] = ds
context.dp[self.outputs[0]] = df
return context.dp
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def daily_returns(self, context):
context.dp[self.outputs[0]] = context.dp['price'].pct_change(1)
return context.dp
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def excess_momentum(self, context):
lookback = self.kwargs['lookback']
ds = context.dp['price'].pct_change(lookback).iloc[-1] - \
context.dp['price'][context.risk_free].pct_change(lookback).iloc[-1]
df = pd.DataFrame(0, index=context.dp.major_axis, columns=context.dp.minor_axis)
df.iloc[-1] = ds
context.dp[self.outputs[0]] = df
return context.dp
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def log_returns(self, context):
try:
context.dp[self.outputs[0]] = np.log(1. + context.dp['price'].pct_change(1))
except:
raise RuntimeError("Inputs must be ['price']")
return context.dp
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def historic_volatility(self, context):
lookback = self.kwargs['lookback']
try:
ret_log = np.log(1. + context.dp['price'].pct_change())
except:
raise RuntimeError("Inputs must be ['price']")
# this is for pandas < 0.18
# hist_vol = pd.rolling_std(ret_log, lookback)
# this is for pandas ver > 0.18
hist_vol = ret_log.rolling(window=lookback, center=False).std()
context.dp[self.outputs[0]] = hist_vol * np.sqrt(252 / lookback)
return context.dp
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def average_excess_return_momentum(self, context):
'''
Average Excess Return Momentum
average_excess_return_momentum is the average of monthly returns in excess of the risk_free rate for multiple
periods (1,3,6,12 months). In addtion, average momenta < 0 are set to 0.
'''
h = context.dp[self.inputs[0]].copy()
hm = h.resample('M').last()
hb = h.resample('M').last()[context.risk_free]
ds = (hm.ix[-1] / hm.ix[-2] - hb.ix[-1] / hb.ix[-2] + hm.ix[-1] / hm.ix[-4]
- hb.ix[-1] / hb.ix[-4] + hm.ix[-1] / hm.ix[-7] - hb.ix[-1] / hb.ix[-7]
+ hm.ix[-1] / hm.ix[-13] - hb.ix[-1] / hb.ix[-13]) / 22
ds[ds < 0] = 0
df = pd.DataFrame(0, index=h.index, columns=h.columns)
df.iloc[-1] = ds
context.dp[self.outputs[0]] = df
return context.dp
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def paa_momentum(self, context):
ds = context.dp[self.inputs[0]].iloc[-1] / context.dp[self.inputs[1]].iloc[-1] - 1
df = pd.DataFrame(0, index=context.dp.major_axis, columns=context.dp.minor_axis)
df.iloc[-1] = ds
context.dp[self.outputs[0]] = df
return context.dp
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def crossovers(self, context):
df1 = context.dp[self.inputs[0]]
df2 = context.dp[self.inputs[1]]
down = (df1 > df2) & (df1.shift(1) < df2.shift(1)).astype(int)
up = (df1 < df2) & (df1.shift(1) > df2.shift(1)).astype(int)
# returns +1 for crosses above and -1 for crosses below
return down * (-1) + up
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def slope(self, context):
lookback = self.kwargs['lookback']
ds = pd.Series(index=context.dp.minor_axis)
for asset in context.dp.minor_axis:
ds[asset] = talib.LINEARREG_SLOPE(context.dp[self.inputs[0]][asset].values, lookback)[-1]
df = pd.DataFrame(0, index=context.dp.major_axis, columns=context.dp.minor_axis)
df.iloc[-1] = ds
return df
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
class Configurator():
'''
The Configurator uses the Strategy Parameters set up by the StrategyParameters Class and dictionary of global
parameters to create all the objects required for the algorithm.
'''
# def __init__ (self, context, strategies, global_parameters=None) :
def __init__(self, context, strategies):
self.strategies = strategies
# self.global_parameters = global_parameters
# self._set_global_parameters (context)
context.tranforms = define_transforms(context)
context.algo_rules = define_rules(context)
self._configure_algo_strategies(context)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _configure_algo_strategies(self, context):
for s in self.strategies:
self._check_valid_parameters(context, s)
self._configure_strategy(context, s)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# TODO: would be better to make this table-driven
# TODO : check strategy names are unique
# TODO : compute context.max_lookback
def _check_valid_parameters(self, context, strategy):
N = len(strategy.portfolios)
s = strategy
self._check_valid_parameter(context, s, strategy.portfolios, 'portfolios', list, N, list, ''),
self._check_valid_parameter(context, s, strategy.portfolio_allocation_modes, 'portfolio_allocation_modes',
list, N, str, VALID_PORTFOLIO_ALLOCATION_MODES),
self._check_valid_parameter(context, s, strategy.security_weights, 'security_weights', list, N, list, ''),
self._check_valid_parameter(context, s, strategy.portfolio_allocation_formulas, 'portfolio_allocation_formulas',
list,
N, str, VALID_PORTFOLIO_ALLOCATION_FORMULAS),
self._check_valid_parameter(context, s, strategy.security_scoring_methods, 'security_scoring_methods', list, N,
str, VALID_SECURITY_SCORING_METHODS),
self._check_valid_parameter(context, s, strategy.security_scoring_factors, 'security_scoring_factors', list, N,
dict, ''),
self._check_valid_parameter(context, s, strategy.security_n_tops, 'security_n_tops', list, N, int, '')
self._check_valid_parameter(context, s, strategy.portfolio_scoring_method, 'portfolio_scoring_method', list, 1,
str, VALID_PORTFOLIO_SCORING_METHODS),
self._check_valid_parameter(context, s, strategy.portfolio_scoring_factors, 'portfolio_scoring_factors', list,
1, dict, ''),
self._check_valid_parameter(context, s, strategy.portfolio_n_top, 'portfolio_n_top', list, 1, int, '')
self._check_valid_parameter(context, s, strategy.protection_modes, 'protection_modes', list, N,
str, VALID_PROTECTION_MODES),
self._check_valid_parameter(context, s, strategy.protection_rules, 'protection_rules', list, N, str, ''),
self._check_valid_parameter(context, s, strategy.protection_formulas, 'protection_formulas', list, N,
str, VALID_PROTECTION_FORMULAS),
self._check_valid_parameter(context, s, strategy.cash_proxies, 'cash_proxies', list, N, type(symbols('SPY')[0]),
''),
self._check_valid_parameter(context, s, strategy.strategy_allocation_mode, 'strategy_allocation_mode', str,
1, str, VALID_STRATEGY_ALLOCATION_MODES)
self._check_valid_parameter(context, s, strategy.portfolio_weights, 'portfolio_weights', list, N, float, ''),
self._check_valid_parameter(context, s, strategy.strategy_allocation_formula, 'strategy_allocation_formula',
str,
1, str, VALID_STRATEGY_ALLOCATION_FORMULAS)
self._check_valid_parameter(context, s, strategy.strategy_allocation_rule, 'strategy_allocation_rule', str,
1, str, '')
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _check_valid_parameter(self, context, s, param, name, param_type, param_length, item_type, valid_params):
if name in ['strategy_allocation_mode', 'portfolio_weights', 'strategy_allocation_formula',
'strategy_parameters', 'strategy_allocation_rule', 'portfolio_scoring_method',
'portfolio_scoring_factors', 'portfolio_n_top']:
self._check_strategy_parameters(context, s, param, name, param_type, param_length, item_type, valid_params)
else:
# if param is None and name in NONE_NOT_ALLOWED :
# raise RuntimeError ('"None" not allowed for parameter {}'.format(name))
# if param is None and 'FIXED' in s.portfolio_allocation_modes:
# raise RuntimeError ('Parameter {} cannot be None for portfolio_allocation_mode "FIXED"'.format(name))
# else:
# # valid None parameter
# return
self._check_param_type(name, param, param_type)
if len(param) != param_length:
raise RuntimeError('Parameter {} must be of length {} not {}'.format(name, param_length, len(param)))
for n in range(param_length):
if param[n] == None and name in NONE_NOT_ALLOWED:
raise RuntimeError('"None" not allowed for parameter {}'.format(name))
elif param[n] == None:
if name == 'scoring_factors' and s.protection_modes == 'RS':
self._check_valid_scoring_factors(name, param[n])
# if name == 'security_n_tops' and s.portfolio_allocation_modes[n] == 'FIXED' :
# if param[n] != len(s.security_weights[n]) :
# raise RuntimeError ('For portfolio_allocation_mode = "FIXED", n_tops must equal no of security weights')
continue
if valid_params != "":
if param[n] not in valid_params:
raise RuntimeError('Invalid {} {}'.format(name, param[n]))
if not isinstance(param[n], item_type):
raise RuntimeError('Items of {} must be of type {} not {}'.format(name, item_type, type(param[n])))
if name == 'portfolios':
self._check_valid_portfolio(param[n])
if name.endswith('_weights') and np.sum(param[n]) != 1.:
raise RuntimeError('Sum of {} must equal 1, not {}'.format(name, np.sum(param)))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _check_strategy_parameters(self, context, s, param, name, param_type, param_length, item_type, valid_params):
if name == 'strategy_allocation_mode':
if param not in valid_params:
raise RuntimeError('Invalid strategy_allocation_mode {}'.format(param))
elif name == 'portfolio_weights' and s.strategy_allocation_mode == 'FIXED':
if np.sum(param) != 1.:
raise RuntimeError('portfolio_weights must be a list of floating point numbers with sum = 1')
elif name == 'strategy_allocation_formula':
if param not in valid_params:
raise RuntimeError('Invalid strategy_allocation_formula {}'.format(param))
elif name == 'strategy_allocation_rule' and s.strategy_allocation_rule != None:
valid_rules = [rule.name for rule in context.algo_rules]
if s.strategy_allocation_rule not in valid_rules:
raise RuntimeError(
'Strategy rule {} not found. Check rule definitions'.format(s.strategy_allocation_rule))
elif name == 'portfolio_scoring_method':
if param not in valid_params:
raise RuntimeError('Invalid strategy_allocation_formula {}'.format(param))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _check_param_type(self, name, param, param_type):
if not isinstance(param, param_type):
raise RuntimeError('Parameter {} must be of type {} not {}'.format(name, param_type, type(param)))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _check_valid_scoring_factors(self, name, factors):
sum_of_weights = 0.
for key in factors.keys():
if not key[0] in ['+', '-']:
raise RuntimeError('First character of scoring factor {}, must be "+" or "-"'.format(key))
sum_of_weights += factors[key]
if sum_of_weights != 1.:
raise RuntimeError('Sum of {} weights must equal 1, not {}'.format(name, sum_of_weights))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _check_valid_portfolio(self, pfolio):
if len(pfolio) < 1:
raise RuntimeError('Portfolio must have at least one item')
for n in range(len(pfolio)):
if not isinstance(pfolio[n], type(symbols('SPY')[0])):
raise RuntimeError('portfolio item {} must be of type '.format(type(symbols('SPY')[0])))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def _configure_strategy(self, context, s):
portfolios = []
for n in range(len(s.portfolios)):
if s.security_scoring_methods[n] is None:
scoring_model = None
else:
scoring_model = ScoringModel(context,
method=s.security_scoring_methods[n],
factors=s.security_scoring_factors[n],
n_top=s.security_n_tops[n])
if s.protection_modes[n] == None:
downside_protection_model = None
else:
downside_protection_model = DownsideProtectionModel(context,
mode=s.protection_modes[n],
rule=s.protection_rules[n],
formula=s.protection_formulas[n])
portfolios = portfolios + \
[Portfolio(context,
ID=s.ID + '_p' + str(n + 1),
securities=s.portfolios[n],
allocation_model=AllocationModel(context,
mode=s.portfolio_allocation_modes[n],
weights=s.security_weights[n],
formula=s.portfolio_allocation_formulas[n],
kwargs=s.portfolio_allocation_kwargs[n]
),
scoring_model=scoring_model,
downside_protection_model=downside_protection_model,
cash_proxy=s.cash_proxies[n]
)]
if s.portfolio_scoring_method is None:
scoring_model = None
else:
scoring_model = ScoringModel(context,
method=s.portfolio_scoring_method,
factors=s.portfolio_scoring_factors,
n_top=s.portfolio_n_top)
s.strategy = Strategy(context,
ID=s.ID,
allocation_model=AllocationModel(context,
mode=s.strategy_allocation_mode,
weights=s.portfolio_weights,
formula=s.strategy_allocation_formula,
kwargs=s.strategy_allocation_kwargs,
rule=s.strategy_allocation_rule),
scoring_model=scoring_model,
portfolios=portfolios
)
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
class StrategyParameters():
'''
StrategyParameters hold the parameters for each strategy for a single or multistrategy algoritm
calling:
strategy = StrategyParameters(context, portfolios, portfolio_allocation_modes, security_weights,
portfolio_allocation_formulas,
scoring_methods, scoring_factors, n_tops,
protection_modes, protection_rules, protection_formulas,
cash_proxies, strategy_allocation_mode, portfolio_weights=None,
strategy_allocation_formula, strategy_allocation_rule)
see below for definition of each parameter
'''
# NOTE: kwarg label 'lookback' should be ALWAYS be used for timeseries lookback periods!
def __init__(self, context, ID, portfolios=[],
portfolio_allocation_modes=[], security_weights=None,
portfolio_allocation_formulas=None,
portfolio_allocation_kwargs=None,
security_scoring_methods=None, security_scoring_factors=None,
security_n_tops=None,
protection_modes=None, protection_rules=None, protection_formulas=None,
cash_proxies=[],
strategy_allocation_mode='EW', portfolio_weights=None,
portfolio_scoring_method=None, portfolio_scoring_factors=None,
portfolio_n_top=None,
strategy_allocation_formula=None,
strategy_allocation_kwargs=None,
strategy_allocation_rule=None):
# strategy ID, must be unique str
# eg 'strat1'
self.ID = ID
# list of n valid security lists (must be at least one security list)
# eg [symbols('SPY','EEM')] or [symbols('SPY','EEM'), symbols('TLT','JNK','SHY'),....]
self.portfolios = portfolios
n = len(portfolios)
# list of n VALID_PORTFOLIO_ALLOCATION_MODES, one for each portfolio
# eg ['EW'] or ['EW', 'PROPORTIONAL',.....]
self.portfolio_allocation_modes = portfolio_allocation_modes
# either None or list of n kwargs each containing kwargs matching porfolio_allocation_modes
# eg None or [kwargs1] or [kwargs1, kwargs2, ....] where kargsn = dict of kwargs relevant to modes
self.portfolio_allocation_kwargs = portfolio_allocation_kwargs
if portfolio_allocation_kwargs is None:
self.portfolio_allocation_kwargs = [None for i in range(n)]
# None or list of n lists of security weights for 'FIXED' portfolio_allocation_modes, else None
# eg None or [[0.2,0.8]] or [[0.5,0.5],[0.1,0.7,0.2]...] where sum of each list = 1
self.security_weights = security_weights
if security_weights is None:
self.security_weights = [None for i in range(n)]
# None or list of n VALID_PORTFOLIO_ALLOCATION_FORMULAS for 'BY_FORMULA'
# portfolio_allocation_modes, else None
# eg None or [valid formula] or [None, valid formula, ...] for each portfolio where allocation 'BY_FORMULA'
self.portfolio_allocation_formulas = portfolio_allocation_formulas
if portfolio_allocation_formulas is None:
self.portfolio_allocation_formulas = [None for i in range(n)]
# None or list of n VALID_SECURITY_SCORING_METHODS, one for each portfolio
# eg None or ['RS'] or [None, 'EAA', ....]
self.security_scoring_methods = security_scoring_methods
if security_scoring_methods is None:
self.security_scoring_methods = [None for i in range(n)]
# None or list of n dicts of scoring factors, relevant to each scoring method
# eg None or [factors1] or [None, factors2, ...] where factorsn = dict of factors relevant to scoring methods
self.security_scoring_factors = security_scoring_factors
if security_scoring_factors is None:
self.security_scoring_factors = [None for i in range(n)]
# None or list of n_tops, one for each ranked portfolio, else None; n_top <= len(portfolio) - 1
# eg None or [1], [1,2,...]
self.security_n_tops = security_n_tops
if security_n_tops is None:
self.security_n_tops = [None for i in range(n)]
# None or list of n VALID_PROTECTION_MODES, one for each portfolio
# eg None or ['RAA'] or [None, 'BY_RULE','BY_FORMULA', ....]
self.protection_modes = protection_modes
if protection_modes is None:
self.protection_modes = [None for i in range(n)]
# None or list of n valid rules for portfolios with protection mode 'BY_RULE', else None
# eg None or [valid rule] or [None, valid rule, ...] for each portfolio where allocation 'BY_RULE'
self.protection_rules = protection_rules
if protection_rules is None:
self.protection_rules = [None for i in range(n)]
# None or list of n VALID_PROTECTION_FORMULAS for portfolios with protection mode 'BY_FORMULA', else None
# eg None or [valid formula] or [None, valid formula, ...] for each portfolio where allocation 'BY_FORMULA'
self.protection_formulas = protection_formulas
if protection_formulas is None:
self.protection_formulas = [None for i in range(n)]
# list of n valid securities to be used as cash proxies, one for each portfolio
# eg [symbol('SHY')] or [symbol('SHY'), symbol('TLT'),...] NOTE: symbol NOT symbols!!
self.cash_proxies = cash_proxies
# any one of VALID_STRATEGY_ALLOCATION_MODES
# eg 'RISK_TARGET'
self.strategy_allocation_mode = strategy_allocation_mode
# None or any kwargs relevant to the strategy_allocation_mode
# eg {'lookback': 100, 'target_risk': 0.01}
self.strategy_allocation_kwargs = strategy_allocation_kwargs
# None or list of n portfolio weights (sum = 1) if strategy_allocation_mode is 'FIXED'
self.portfolio_weights = portfolio_weights
if portfolio_weights is None:
self.portfolio_weights = [None for i in range(n)]
# None or one of VALID_STRATEGY_ALLOCATION_FORMULAS, if strategy_allocation_mode is 'BY_FORMULA'
# eg 'PAA'
self.strategy_allocation_formula = strategy_allocation_formula
# None or one of VALID_PORTFOLIO_SCORING_METHODS
# eg 'RS'
self.portfolio_scoring_method = portfolio_scoring_method
# None or dict of factors to be used for scoring (ranking) portfolios
# eg {'+factor1': 10, '-factor2':20} - NOTE that factor names must be prefixed by '+' or '-'
# to indicate whether to rank factor ascending (+) or descending (-)
self.portfolio_scoring_factors = portfolio_scoring_factors
# None or integer <= no of portfolios - 1
# eg 2
self.portfolio_n_top = portfolio_n_top
# None or one of VALID_STRATEGY_ALLOCATION_RULES
# eg None
self.strategy_allocation_rule = strategy_allocation_rule
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# if traling stops not required, this can be commented out
def handle_data(context, data):
if not context.use_trailing_stops:
return
# see https://www.quantopian.com/posts/trailing-stop-loss-with-multiple-securities
for security in context.portfolio.positions:
current_position = context.portfolio.positions[security].amount
context.stop_price[security] = max(context.stop_price[security] if security in context.stop_price
else 0, context.stop_pct * data.current(security, 'price'))
if (data.current(security, 'price') < context.stop_price[security]) and (current_position > 0):
order_target_percent(security, 0)
del context.stop_price[security]
log.info("Trail Selling {} at {}".format(security.symbol, data.current(security, 'price')))
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def before_trading_start(context, data):
"""
Called every day before market open.
"""
if get_environment('platform') == 'zipline':
# allow data buffer to fill in the ZIPLINE ENVIRONMENT
if context.day_no <= context.max_lookback:
context.day_no += 1
return
# generate updated algo data
context.algo_data = context.data.update(context, data)
if np.sum(context.strategies[0].weights) > 1.e-07:
# wait until first allocation to generate portfolio and strategy metrics
context.data.update_portfolio_and_strategy_metrics(context, data)
return context.algo_data
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def initialize(context):
# this routine should not require changes
context.transforms = []
context.algo_rules = []
context.max_lookback = 64 # minimum value for max_lookback
context.outstanding = {} # orders which span multiple days
context.raw_data = {}
context.trading_day_no = 0
#############################################################
set_global_parameters(context)
#############################################################
context.strategy_parameters = set_strategy_parameters(context)
# strategy_params = [context.strategy_parameters[p] for p in context.strategy_parameters]
#############################################################
# configure strategies
Configurator(context, strategies=context.strategy_parameters)
#############################################################
strategies = [s.strategy for s in context.strategy_parameters]
algo = set_algo_parameters(context, strategies)
#############################################################
# daily functions to handle GTC orders
# note: GTC_LIMIT=10 (default) set as global
schedule_function(algo.check_for_unfilled_orders, date_rules.every_day(), time_rules.market_close())
schedule_function(algo.fill_outstanding_orders, date_rules.every_day(), time_rules.market_open())
if context.show_positions:
schedule_function(algo.show_positions, date_rules.month_start(days_offset=0), time_rules.market_open())
if context.show_records:
# show records every day
# edit the show_records function to include records required
schedule_function(algo.show_records, date_rules.every_day(), time_rules.market_close())
if context.rebalance_period == 'A':
schedule_function(algo.check_signal_trigger, date_rules.every_day(), time_rules.market_open())
else:
periods = {'D': date_rules.every_day(),
'WS': date_rules.week_start(days_offset=context.days_offset),
'WE': date_rules.week_end(days_offset=context.days_offset),
'MS': date_rules.month_start(days_offset=context.days_offset),
'ME': date_rules.month_end(days_offset=context.days_offset)}
period = periods[context.rebalance_period]
if context.on_open:
time_rule = time_rules.market_open(hours=context.hours, minutes=context.minutes)
else:
time_rule = time_rules.market_close(hours=context.hours, minutes=context.minutes)
schedule_function(algo.rebalance, period, time_rule)
#########################################################################################################
#########################################################################################################
# the following routines contain all the configuration details
# any transform which relies on lookback data MUST have a 'lookback' kwarg
# and, optionally, 'period' = <no. of days> |'W'| 'M'
# NOTE: kwarg label 'lookback' should be ALWAYS be used for timeseries lookback periods!
def define_transforms(context): # Define transforms
# select transforms required and make sure correct parameters are used
# no need to comment out unused transforms, but they will slow algo down
context.transforms = [
Transform(context, name='momentum', function=Transform.n_period_return, inputs=['price'],
kwargs={'lookback': 45, 'risk_free': 0, 'skip_period': False}, outputs=['momentum']),
Transform(context, name='mom_A', function=ROCP, inputs=['price'],
kwargs={'lookback': 43}, outputs=['mom_A']),
Transform(context, name='mom_B', function=ROCP, inputs=['price'],
kwargs={'lookback': 21}, outputs=['mom_B']),
Transform(context, name='daily_returns', function=Transform.daily_returns, inputs=['price'],
kwargs={}, outputs=['daily_returns']),
Transform(context, name='vol_C', function=STDDEV, inputs=['daily_returns'],
kwargs={'lookback': 20}, outputs=['vol_C']),
Transform(context, name='hist_vol', function=Transform.historic_volatility, inputs=['price'],
kwargs={'lookback': 45}, outputs=['hist_vol']),
Transform(context, name='slope', function=Transform.slope, inputs=['price'],
kwargs={'lookback': 100}, outputs=['slope']),
Transform(context, name='TMOM', function=Transform.momentum, inputs=['price'],
kwargs={'lookback': 43}, outputs=['TMOM']),
Transform(context, name='MA', function=SMA, inputs=['price'],
kwargs={'lookback': 100}, outputs=['MA']),
Transform(context, name='R', function=Transform.average_excess_return_momentum, inputs=['price'],
kwargs={'lookback': 13, 'period': 'M'}, outputs=['R']),
Transform(context, name='RMOM', function=Transform.momentum, inputs=['price'],
kwargs={'lookback': 43}, outputs=['RMOM']),
Transform(context, name='TMOM', function=Transform.excess_momentum, inputs=['price'],
kwargs={'lookback': 43}, outputs=['TMOM']),
Transform(context, name='EMOM', function=Transform.momentum, inputs=['price'],
kwargs={'lookback': 43}, outputs=['EMOM']),
Transform(context, name='volatility', function=STDDEV, inputs=['daily_returns'],
kwargs={'lookback': 43}, outputs=['volatility']),
Transform(context, name='smma', function=Transform.simple_mean_monthly_average, inputs=['price'],
kwargs={'lookback': 1, 'period': 'M'}, outputs=['smma']),
Transform(context, name='mom', function=Transform.paa_momentum, inputs=['price', 'smma'],
kwargs={'lookback': 2, 'period': 'M'}, outputs=['mom']),
Transform(context, name='smma_12', function=Transform.simple_mean_monthly_average, inputs=['price'],
kwargs={'lookback': 12, 'period': 'M'}, outputs=['smma_12']),
Transform(context, name='rebalance_signal', function=Transform.crossovers, inputs=['price', 'MA'],
kwargs={'timeperiods': 100}, outputs=['rebalance_signal']),
]
return context.transforms
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def define_rules(context): # Define rules
# select rules required and make sure correct transform names are used
# no need to comment out unused rules
context.algo_rules = [
# Rule(context, name='absolute_momentum_rule', rule="'price' < 'smma' "),
# Rule(context, name='dual_momentum_rule', rule="'TMOM' < 0"),
Rule(context, name='smma_rule', rule="'price' < 'smma'"),
# Rule(context, name='complex_rule', rule="'price' < smma or 'TMOM' < 0"),
Rule(context, name='momentum_rule', rule="'price' < 'MA'"),
Rule(context, name='EAA_rule', rule="'R' <= 0"),
Rule(context, name='paa_rule', rule="'mom' <= 0"),
Rule(context, name='paa_filter', rule="'mom' > 0"),
Rule(context, name='momentum_rule1', rule="'price' < 'smma_12'"),
Rule(context, name='riskon', rule="'price' > 'smma_12'", apply_to=context.market_proxy),
Rule(context, name='riskoff', rule="'price' <= 'smma_12'", apply_to=context.market_proxy),
Rule(context, name='neutral', rule="'slope' <= 0.1 and 'slope' >= -0.1",
apply_to=context.market_proxy),
Rule(context, name='bull', rule="'slope' > 0.1", apply_to=context.market_proxy),
Rule(context, name='bear', rule="'slope' < -0.1", apply_to=context.market_proxy)
# Rule(context, name='rebalance_rule', rule="'rebalance_signal' != 0"),
]
return context.algo_rules
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def set_global_parameters(context):
# set the following parameters as required
context.show_positions = True
# select records to show in algo.show_records()
context.show_records = True
# replace cash_proxy with risk_free if context.allow_cash_proxY_replacement is True
# and cash_proxy price is <= average cash_proxy price over last context.cash_proxy_lookback days
context.allow_cash_proxy_replacement = False
context.cash_proxy_lookback = 43 # must be <= context.max_lookback
context.use_trailing_stops = False
context.stop_pct = 0.92
context.stop_price = {}
# to calculate portfolio and strategy Sharpe ratios
context.SR_lookback = 63
context.SD_factor = 0
# position only changed if percentage change > threshold
context.threshold = 0.01
# the following can be changed
context.market_proxy = symbol('SPY')
context.risk_free = symbol('SHY')
set_commission(commission.PerTrade(cost=10.0))
context.leverage = 1.0
# parameters for rebalance period
context.rebalance_period = 'ME' # 'D'|'WS'|'WE'|'MS'|'ME'|'A'
context.days_offset = 2
context.on_open = True # if false, then market_close
context.hours = 0
context.minutes = 1
context.rebalance_interval = 1 # rebalancing will occur every balance_interval * balance_period
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def set_strategy_parameters(context):
# If not required, parameters may be omitted
# no need to comment out unused strategies
# strategies used by the algo selected in set_algo_parameters
# configure strategies below
# ####################################################################################################
# single RS portfolio with downside protection
s1 = StrategyParameters(context, ID='s1',
portfolios=[symbols('IVV', 'IJH', 'IJR', 'VEA',
'VWO', 'VNQ', 'AGG')],
portfolio_allocation_modes=['EW'],
security_scoring_methods=['RS'],
security_scoring_factors=[{'+momentum': 1.0}],
security_n_tops=[2],
protection_modes=['BY_RULE'],
protection_rules=['smma_rule'],
cash_proxies=[symbol('IEF')],
strategy_allocation_mode='EW',
)
# ####################################################################################################
# RAA - Robust Asset Allocation (4 portfolios
# s2 = StrategyParameters(context, ID='s2',
# portfolios=[symbols('MDY', 'EFA'), symbols('VNQ', 'RWX'),
# symbols('GLD', 'AGG'),
# symbols('EDV', 'EMB')],
# portfolio_allocation_modes=['EW', 'EW', 'EW', 'EW'],
# security_scoring_methods=['RS', 'RS', 'RS', 'RS'],
# security_scoring_factors=[{'+EMOM':1.}, {'+EMOM':1.},
# {'+EMOM':1.}, {'+EMOM':1.}],
# security_n_tops=[1, 1, 1, 1],
# protection_modes=['RAA', 'RAA', 'RAA', 'RAA'],
# cash_proxies=[symbol('TLT'), symbol('TLT'), symbol('TLT'), symbol('TLT')],
# strategy_allocation_mode='MAX_SHARPE',
# strategy_allocation_kwargs={'lookback': 21, 'shorts': False},
# )
# ####################################################################################################
# Strategy 3 - minimumn correlation strategy
# s3 = StrategyParameters(context, ID='s3',
# portfolios=[symbols( 'IVV', 'IJH', 'IJR', 'VEA',
# 'VWO', 'VNQ', 'AGG')],
# portfolio_allocation_modes=['MIN_CORRELATION'],
# portfolio_allocation_kwargs=[{'lookback': 21, 'risk_adjusted': True}],
# protection_modes=['BY_RULE'],
# protection_rules=['smma_rule'],
# protection_formulas=None,
# cash_proxies=[symbol('SHY')],
# strategy_allocation_mode='EW'
# )
# ####################################################################################################
# sdp_1 - downside protection strategy based on Alpha Architect DPM Rule: 50% TMOM, 50% MA
# http://blog.alphaarchitect.com/2015/08/13/avoiding-the-big-drawdown-downside-protection-investment-strategies/#gs.qtrlStY
# sdp_1 = StrategyParameters(context, ID='sdp_1',
# portfolios=[symbols( 'XLY', 'XLF', 'XLK', 'XLE', 'XLV', 'XLI',
# 'XLP', 'XLB', 'XLU')],
# portfolio_allocation_modes=['EW'],
# protection_modes=['RAA'],
# # protection_modes=['BY_RULE'],
# # protection_rules=['smma_rule'],
# # protection_rules=['momentum_rule'],
# cash_proxies=[symbol('SHY')],
# strategy_allocation_mode='EW'
# )
# ####################################################################################################
# RS with downside protection, single portfolio, EtfReplay-like ranking formula
# rs_1 = StrategyParameters(context, ID='rs_1',
# portfolios=[symbols( 'MDY', 'EFA')],
# portfolio_allocation_modes=['EW'],
# security_scoring_methods=['RS'],
# security_scoring_factors=[{'+mom_A': 0.65, '+mom_B' : 0.35, '-vol_C' : 0.}],
# security_n_tops=[1],
# protection_modes=['BY_RULE'],
# protection_rules=['smma_rule'],
# cash_proxies=[symbol('TLT')],
# strategy_allocation_mode='EW')
# ####################################################################################################
# RS with 2 portfolios based on EtfReplay ranking model
# rs_2 = StrategyParameters(context, ID='rs_2',
# portfolios=[symbols( 'MDY', 'EFA'), symbols('IHF', 'EFA')],
# portfolio_allocation_modes=['EW', 'FIXED'],
# security_weights=[None, [0.8, 0.2]],
# security_scoring_methods=['RS', 'RS'],
# security_scoring_factors=[{'+mom_A': 0.65, '+mom_B' : 0.35, '-vol_C' : 0.},
# {'+mom_A': 0.65, '+mom_B' : 0.35, '-vol_C' : 0.}],
# security_n_tops=[1, 2],
# protection_modes=['BY_RULE', 'BY_RULE'],
# protection_rules=['smma_rule', 'smma_rule'],
# cash_proxies=[symbol('TLT'), symbol('TLT')],
# strategy_allocation_mode='FIXED',
# portfolio_weights=[0.6, 0.4]
# )
# ####################################################################################################
# EAA - Elastic Asset Allocation
# http://indexswingtrader.blogspot.co.za/2015/01/a-primer-on-elastic-asset-allocation.html
# eaa_1 = StrategyParameters (context, ID='eaa_1',
# portfolios=[symbols('EEM', 'IEF', 'IEV', 'MDY', 'QQQ', 'TLT', 'XLV')],
# portfolio_allocation_modes=['PROPORTIONAL'],
# security_scoring_methods=['EAA'],
# # Golden Defensive EAA: wi ~ zi = squareroot( ri * (1-ci) )
# security_scoring_factors = [{'R': 1.0, 'C' : 1.0, 'V' : 0.0, 'S' : 0.5, 'eps' : 1e-6}],
# protection_modes=['BY_FORMULA'], protection_rules=['EAA_rule'],
# protection_formulas=['DPF'], cash_proxies=[symbol('TLT')], strategy_allocation_mode='EW')
# ####################################################################################################
# Risk_on Risk_off
# roo_1 = StrategyParameters(context, ID='roo_1',
# portfolios=[symbols('SPY', 'QQQ', 'IWM', 'VGK', 'EWJ', 'EEM',
# 'IYR', 'GSG', 'GLD'), symbols('TLT', 'TIP', 'LQD', 'SHY')],
# portfolio_allocation_modes=['EW', 'EW'],
# security_scoring_methods=['RS', 'RS'],
# security_scoring_factors=[{'+smma': 1}, {'+smma': 1}],
# security_n_tops=[3, 1],
# protection_modes=['BY_RULE', None],
# protection_rules=['momentum_rule1', None],
# cash_proxies=[symbol('IEF'), symbol('SHY')], strategy_allocation_mode='EW')
#####################################################################################################
# Adaptive Asset Allocation
# aaa_1 = StrategyParameters(context, ID='aaa_1',
# portfolios=[symbols( 'SPY', 'IWM', 'EFA', 'EEM', 'VNQ', 'GLD', 'GSG',
# 'JNK', 'AGG', 'TIP', 'IEF', 'TLT')],
# portfolio_allocation_modes=['VOLATILITY_WEIGHTED'],
# security_scoring_methods=['RS'],
# security_scoring_factors=[{'+mom': 1.0}],
# security_n_tops=[3],
# protection_modes=['BY_RULE'],
# protection_rules=['smma_rule'],
# cash_proxies=[symbol('TLT')],
# strategy_allocation_mode='EW')
####################################################################################################
# Protective Asset Allocation
# http://indexswingtrader.blogspot.co.za/2016/04/introducing-protective-asset-allocation.html
# paa_1 = StrategyParameters(context, ID='paa_1',
# portfolios=[symbols('SPY', 'QQQ', 'IWM', 'VGK', 'EWJ', 'EEM',
# 'IYR', 'GSG', 'GLD', 'LQD', 'TLT', 'HYG'),
# symbols('IEF', 'TLT')],
# portfolio_allocation_modes=['EW', 'EW'],
# security_scoring_methods=['RS', 'RS'],
# security_scoring_factors=[{'+mom': 1}, {'+mom': 1}],
# security_n_tops=[3, 1],
# protection_modes=['BY_RULE', None],
# protection_rules=['paa_rule', None],
# cash_proxies=[symbol('TLT'), symbol('TLT')],
# strategy_allocation_mode='BY_FORMULA',
# strategy_allocation_formula='PAA',
# strategy_allocation_rule='paa_filter',
# strategy_allocation_kwargs={'protection_factor': 1})
####################################################################################################
# Bond Rotation Strategy
# brs_1 = StrategyParameters(context, ID='brs_1',
# portfolios=[symbols('CWB', 'JNK'), symbols('CWB', 'JNK'), symbols('CWB', 'JNK'),
# symbols('CWB', 'PCY'), symbols('CWB', 'PCY'), symbols('CWB', 'PCY'),
# symbols('CWB', 'TLT'), symbols('CWB', 'TLT'), symbols('CWB', 'TLT'),
# symbols('JNK', 'PCY'), symbols('JNK', 'PCY'), symbols('JNK', 'PCY'),
# symbols('JNK', 'TLT'), symbols('JNK', 'TLT'), symbols('JNK', 'TLT'),
# symbols('PCY', 'TLT'), symbols('PCY', 'TLT'), symbols('PCY', 'TLT')],
# portfolio_allocation_modes=['FIXED', 'FIXED', 'FIXED',
# 'FIXED', 'FIXED', 'FIXED',
# 'FIXED', 'FIXED', 'FIXED',
# 'FIXED', 'FIXED', 'FIXED',
# 'FIXED', 'FIXED', 'FIXED',
# 'FIXED', 'FIXED', 'FIXED'],
# security_weights=[[0.6, 0.4], [0.5, 0.5], [0.4, 0.6],
# [0.6, 0.4], [0.5, 0.5], [0.4, 0.6],
# [0.6, 0.4], [0.5, 0.5], [0.4, 0.6],
# [0.6, 0.4], [0.5, 0.5], [0.4, 0.6],
# [0.6, 0.4], [0.5, 0.5], [0.4, 0.6],
# [0.6, 0.4], [0.5, 0.5], [0.4, 0.6]],
# cash_proxies=[symbol('TLT'), symbol('TLT'), symbol('TLT'),
# symbol('TLT'), symbol('TLT'), symbol('TLT'),
# symbol('TLT'), symbol('TLT'), symbol('TLT'),
# symbol('TLT'), symbol('TLT'), symbol('TLT'),
# symbol('TLT'), symbol('TLT'), symbol('TLT'),
# symbol('TLT'), symbol('TLT'), symbol('TLT')],
# strategy_allocation_mode='BRUTE_FORCE_SHARPE',
# strategy_allocation_kwargs={'lookback' : 73})
#####################################################################################################
# brs_2 = StrategyParameters(context, ID='brs_2',
# portfolios=[symbols('CWB', 'JNK'), symbols('CWB', 'PCY'), symbols('CWB', 'TLT'),
# symbols('JNK', 'PCY'), symbols('JNK', 'TLT'), symbols('PCY', 'TLT')],
# portfolio_allocation_modes=['MAX_SHARPE', 'MAX_SHARPE', 'MAX_SHARPE',
# 'MAX_SHARPE', 'MAX_SHARPE', 'MAX_SHARPE'],
# portfolio_allocation_kwargs=[
# {'lookback' : 73, 'shorts' : False},{'lookback' : 73, 'shorts' : False},
# {'lookback' : 73, 'shorts' : False},{'lookback' : 73, 'shorts' : False},
# {'lookback' : 73, 'shorts' : False},{'lookback' : 73, 'shorts' : False}],
# cash_proxies=[symbol('TLT'), symbol('TLT'), symbol('TLT'),
# symbol('TLT'), symbol('TLT'), symbol('TLT')],
# strategy_allocation_mode='BRUTE_FORCE_SHARPE',
# strategy_allocation_kwargs={'lookback' : 73, 'SD_factor' : 2})
####################################################################################################
# context.strategy_parameters = [s1, s2, s3, sdp_1, rs_1, rs_2, eaa_1, roo_1, aaa_1, paa_1, brs_1, brs_2]
context.strategy_parameters = [s1]
return context.strategy_parameters
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
def set_algo_parameters(context, strategies):
# UNCOMMENT ONLY ONE ALGO BELOW
###############################
# simple downside protection algorithm
# http://blog.alphaarchitect.com/2015/08/13/avoiding-the-big-drawdown-downside-protection-investment- strategies/#gs.qtrlStY
# strategy_ID = 'sdp_1'
# algo = Algo (context, [s for s in strategies if s.ID == strategy_ID],
# allocation_model=AllocationModel(context, mode='EW', weights=None, formula=None),
# )
###############################
# EAA - Elastic Asset Allocation
# http://indexswingtrader.blogspot.co.za/2015/01/a-primer-on-elastic-asset-allocation.html
# strategy_ID = 'eaa_1'
# algo = Algo (context, [s for s in strategies if s.ID == strategy_ID],
# allocation_model=AllocationModel(context, mode='EW', weights=None, formula=None),
# )
###############################
# multiple strategies, equally weighted
# list of strategies by ID
# strategy_IDs = ['s1', 's2', 's3', 'sdp_1']
# algo = Algo (context, strategies=[s for s in strategies if s.ID in strategy_IDs],
# allocation_model=AllocationModel(context, mode='EW', weights=None, formula=None),
# )
###############################
# run all uncommented strategies (other than regime-switching strategies)
algo = Algo(context, strategies=[s for s in strategies],
allocation_model=AllocationModel(context, mode='EW'), scoring_model=None,
# allocation_model=AllocationModel(context, mode='RISK_PARITY', kwargs={'lookback':21}), scoring_model=ScoringModel(context, method='RS', factors={'+EMOM':1.}, n_top=1),
regime=None,
)
########################
# 2 regimes: riskon riskoff RS ; riskon=market_proxy price > sma, riskoff=market_proxy price <= sma
# algo = Algo (context, [s for s in strategies if s.ID == 'roo_1'],
# allocation_model=AllocationModel(context, mode='REGIME_EW'),
# regime=Regime( transitions={'1' : ('riskon', ['roo_1_p1']),
# '0' : ('riskoff', ['roo_1_p2']),
# }
# )
# )
########################
# 3 regimes : 'bull', 'bear', 'neutral'
# strategy_IDs = ['rs_2', 'eaa_1']
# algo = Algo (context, strategies = [s for s in strategies if s.ID in strategy_IDs],
# allocation_model=AllocationModel(context, mode='REGIME_EW', weights=None, formula=None),
# regime=Regime(
# transitions={'0' : ('neutral', ['eaa_1']),
# '1' : ('bull', ['rs_2_p1']),
# '-1' : ('bear', ['rs_2_p2', 'eaa_1'])
# }
# )
# )
############################
# AAA - Adaptive Asset Allocation
# http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2359011
# algo = Algo (context, strategies = [s for s in strategies if s.ID == 'aaa_1']
# allocation_model=AllocationModel(context, mode='EW'),
# )
############################
# PAA - Protective Asset Allocation
# http://indexswingtrader.blogspot.co.za/2016/04/introducing-protective-asset-allocation.html
# algo = Algo (context, strategies = [s for s in strategies if s.ID == 'paa_1'],
# allocation_model=AllocationModel(context, mode='EW'),
# )
############################
# BRS - Bond Rotation Strategy
# https://logical-invest.com/portfolio-items/bond-rotation-sleep-well/
# https://www.quantopian.com/posts/the-logical-invest-enhanced-bond-rotation-strategy
# Algo-specific parameters
# context.calculate_SR = True
# context.SR_lookback = 73
# context.SD_factor = 2
# algo = Algo (context, strategies = [s for s in strategies if s.ID == 'brs_1'],
# allocation_model=AllocationModel(context, mode='EW'),
# )
###############################
return algo
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
############################
# TODO
############################
'''
TODO:
1. Clean up the configurator - add validation to classes?
2. clean up transforms and rules
3. add signal at portfolio level?
4. add rebalance period params to set_globa_params so need to change initaliaze
5. how to set GTC_LIMIT as global param
6. write tests!
7. Documentation
8. Fix apply_pandas_function (rolling, expanding)
9. Port the best algos to this template
11. move MODE IMPLEMENTATION ERROR OR DOWNSIDE PROTECTION MODE to give more meaningful error message
12. n_period_return - need to return excess_return, depending on risk_free
14. If rebalance period = 'A' must check that the necessary transforms and rules are present
15. another brute force SR idea - same portfolios as for brs_1, determine max_sharpe allocations for each portfolio, and calculate the SR for each. then select the portfolio with the highest SR (brs_1 only uses very few fixed weights)
16. test for kwargs except EW, PROPORTIONAL,
17. test StrategyPrarmeters.ID
18. Algo - check that there are valid parameters for all strategies
19. if mode = FIXED, no of weights must = no of securities
'''
############################
以上是关于python QUANTOPIAN MSMP 6.00的主要内容,如果未能解决你的问题,请参考以下文章
python RUN QUANTOPIAN(RESEARCH)PIPELINE