python QUANTOPIAN PIPELINE STRATEGY

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python QUANTOPIAN PIPELINE STRATEGY相关的知识,希望对你有一定的参考价值。

# https://www.quantopian.com/posts/introducing-the-pipeline-api

"""
This example comes from a request in the forums. 
The post can be found here: https://www.quantopian.com/posts/ranking-system-based-on-trading-volume-slash-shares-outstanding

The request was: 

I am stuck trying to build a stock ranking system with two signals:
1. Trading Volume/Shares Outstanding.
2. Price of current day / Price of 60 days ago.
Then rank Russell 2000 stocks every month, long the top 5%, short the bottom 5%.

"""

from quantopian.algorithm import attach_pipeline, pipeline_output
from quantopian.pipeline import Pipeline
from quantopian.pipeline import CustomFactor
from quantopian.pipeline.data.builtin import USEquityPricing
from quantopian.pipeline.data import morningstar


# Create custom factor #1 Trading Volume/Shares Outstanding
class Liquidity(CustomFactor):   
    
    # Pre-declare inputs and window_length
    inputs = [USEquityPricing.volume, morningstar.valuation.shares_outstanding] 
    window_length = 1
    
    # Compute factor1 value
    def compute(self, today, assets, out, volume, shares):       
        out[:] = volume[-1]/shares[-1]

# Create custom factor #2 Price of current day / Price of 60 days ago.        
class Momentum(CustomFactor):   
    
    # Pre-declare inputs and window_length
    inputs = [USEquityPricing.close] 
    window_length = 60
    
    # Compute factor2 value
    def compute(self, today, assets, out, close):       
        out[:] = close[-1]/close[0]
        
# Create custom factor to calculate a market cap based on yesterday's close
# We'll use this to get the top 2000 stocks by market cap
class MarketCap(CustomFactor):   
    
    # Pre-declare inputs and window_length
    inputs = [USEquityPricing.close, morningstar.valuation.shares_outstanding] 
    window_length = 1
    
    # Compute market cap value
    def compute(self, today, assets, out, close, shares):       
        out[:] = close[-1] * shares[-1]
        

def initialize(context):
    pipe = Pipeline()
    attach_pipeline(pipe, 'ranked_2000')
       
    # Add the two factors defined to the pipeline
    liquidity = Liquidity()
    pipe.add(liquidity, 'liquidity')
    
    momentum = Momentum()
    pipe.add(momentum, 'momentum')
    
    # Create and apply a filter representing the top 2000 equities by MarketCap every day
    # This is an approximation of the Russell 2000
    mkt_cap = MarketCap()
    top_2000 = mkt_cap.top(2000)
    
    # Rank factor 1 and add the rank to our pipeline
    liquidity_rank = liquidity.rank(mask=top_2000)
    pipe.add(liquidity_rank, 'liq_rank')
    
    # Rank factor 2 and add the rank to our pipeline
    momentum_rank = momentum.rank(mask=top_2000)
    pipe.add(momentum_rank, 'mom_rank')
    
    # Take the average of the two factor rankings, add this to the pipeline
    combo_raw = (liquidity_rank+momentum_rank)/2
    pipe.add(combo_raw, 'combo_raw') 
    
    # Rank the combo_raw and add that to the pipeline
    pipe.add(combo_raw.rank(mask=top_2000), 'combo_rank')
    
    # Set a screen to ensure that only the top 2000 companies by market cap 
    # with a momentum factor greater than 0 are returned
    pipe.set_screen(top_2000 & (momentum>0))
            
    # Scedule my rebalance function
    schedule_function(func=rebalance, 
                      date_rule=date_rules.month_start(days_offset=0), 
                      time_rule=time_rules.market_open(hours=0,minutes=30), 
                      half_days=True)
    
    # Schedule my plotting function
    schedule_function(func=record_vars,
                      date_rule=date_rules.every_day(),
                      time_rule=time_rules.market_close(),
                      half_days=True)
    
    # set my leverage
    context.long_leverage = 0.50
    context.short_leverage = -0.50
    
            
def before_trading_start(context, data):
    # Call pipelive_output to get the output
    context.output = pipeline_output('ranked_2000')
      
    # Narrow down the securities to only the top 200 & update my universe
    context.long_list = context.output.sort(['combo_rank'], ascending=False).iloc[:100]
    context.short_list = context.output.sort(['combo_rank'], ascending=False).iloc[-100:]   

def record_vars(context, data):  
    
     # Record and plot the leverage of our portfolio over time. 
    record(leverage = context.account.leverage)
    
    print "Long List"
    log.info("\n" + str(context.long_list.sort(['combo_rank'], ascending=True).head(10)))
    
    print "Short List" 
    log.info("\n" + str(context.short_list.sort(['combo_rank'], ascending=True).head(10)))

# This rebalancing is called according to our schedule_function settings.     
def rebalance(context,data):
    
    long_weight = context.long_leverage / float(len(context.long_list))
    short_weight = context.short_leverage / float(len(context.short_list))

    
    for long_stock in context.long_list.index:
        log.info("ordering longs")
        log.info("weight is %s" % (long_weight))
        order_target_percent(long_stock, long_weight)
        
    for short_stock in context.short_list.index:
        log.info("ordering shorts")
        log.info("weight is %s" % (short_weight))
        order_target_percent(short_stock, short_weight)
        
    for stock in context.portfolio.positions.iterkeys():
        if stock not in context.long_list.index and stock not in context.short_list.index:
            order_target(stock, 0)

以上是关于python QUANTOPIAN PIPELINE STRATEGY的主要内容,如果未能解决你的问题,请参考以下文章

python QUANTOPIAN策略与管道因素

python RUN QUANTOPIAN(RESEARCH)PIPELINE

python QUANTOPIAN进口管道

python QUANTOPIAN PIPELINE STRATEGY

python QUANTOPIAN ALGO模板(无管道)

python ETF的QUANTOPIAN模板