python QUANTOPIAN ALGO模板(无管道)
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了python QUANTOPIAN ALGO模板(无管道)相关的知识,希望对你有一定的参考价值。
"""
This is a template algorithm on Quantopian for you to adapt and fill in.
"""
import pandas as pd
import numpy as np
def initialize(context):
"""
Called once at the start of the algorithm.
"""
context.strategies = {
'RS0001': {'symbls': symbols('HYS', 'MBB', 'HYMB'), 'prices': 'yahoo',
'rs_lookback': 1, 'risk_lookback': 1, 'n_top': 1,
'frequency': 'M',
'cash_proxy': 'CASHX', 'risk_free': 0}}
name = 'RS0001'
context.symbols = context.strategies[name]['symbls']
context.n_top = context.strategies[name]['n_top']
context.frequency = context.strategies[name]['frequency']
context.rs_lookback = context.strategies[name]['rs_lookback']
context.risk_lookback = context.strategies[name]['risk_lookback']
context.cash_proxy = context.strategies[name]['cash_proxy']
context.risk_free = context.strategies[name]['risk_free']
context.tickers = context.symbols[:]
if context.cash_proxy != 'CASHX':
context.tickers += context.cash_proxy
if not isinstance(context.risk_free, int):
context.tickers += context.risk_free
context.tickers = list(set(context.tickers))
if context.frequency == 'M':
factor = 25
else:
factor = 1
context.max_lookback = max(context.rs_lookback, context.risk_lookback) * factor
# Rebalance at monthend.
schedule_function(rebalance, date_rules.month_end(days_offset=0))
def before_trading_start(context, data):
"""
Called every day before market open.
"""
context.prices = data.history(context.tickers, 'price', context.max_lookback, '1d')
if context.frequency == 'M':
context.prices = context.prices.resample('M').last()
def assign_weights(context, data):
"""
Assign weights to securities that we want to order.
"""
# should be -2 to get previos month's return
returns = context.prices[context.symbols].pct_change(context.rs_lookback).iloc[-1]
if isinstance(context.risk_free, int):
excess_returns = returns
else:
risk_free_returns = context.prices[context.risk_free].pct_change(context.rs_lookback).iloc[-1]
excess_returns = returns - risk_free_returns.values
# relative strength ranking
ranked = excess_returns.rank(ascending=False, method='dense')
# elligibility rule - top n_top ranked securities
elligible = ranked <= context.n_top
# equal weight allocations
elligible = elligible / elligible.sum()
# downside protection
absolute_momentum = context.prices[context.symbols].pct_change(context.risk_lookback).iloc[-1]
absolute_momentum_rule = absolute_momentum > 0
weights = pd.Series(0., index=context.prices.columns)
weights[context.symbols] = elligible * absolute_momentum_rule
if context.cash_proxy != 'CASHX':
weights[context.cash_proxy] = 1 - weights[context.symbols].sum()
return weights
def rebalance(context,data):
"""
Execute orders according to our schedule_function() timing.
"""
if np.isnan(context.prices.iloc[0]).any():
return
weights = assign_weights(context, data)
log.info ('WEIGHTS : {} SUM = {}'.format([(weights.index[i].symbol, v.round(2)) for i,v in enumerate(weights)],
weights.sum()))
for i,v in enumerate(weights):
order_target_percent(weights.index[i], v)
以上是关于python QUANTOPIAN ALGO模板(无管道)的主要内容,如果未能解决你的问题,请参考以下文章