频率分布比较 Python
Posted
技术标签:
【中文标题】频率分布比较 Python【英文标题】:Frequency Distribution Comparison Python 【发布时间】:2015-11-09 12:04:32 【问题描述】:我正在使用 python 和 nltk 研究一些文本,我想比较不同文本中词性的频率分布。
我可以为一个文本做到这一点:
from nltk import *
X_tagged = pos_tag(word_tokenize(open('/Users/X.txt').read()))
X_fd = FreqDist([tag for word, tag in X_tagged])
X_fd.plot(cumulative=True, title='Part of Speech Distribution in Corpus X')
我尝试添加另一个,但运气不佳。我有条件频率分布示例,用于比较多个文本中三个单词的计数,但我希望这些行代表四个不同的文本,y 轴代表计数,x 轴代表不同的文本词性。如何比较同一图表中的文本 Y 和 Z?
【问题讨论】:
【参考方案1】:这是一个使用 matplotlib 的示例:
from matplotlib import pylab as plt
from nltk import *
import numpy as np
# you may use a tokenizer like nltk.tokenize.word_tokenize()
dist =
dist["win"] = FreqDist(tokenizer("first text"))
dist["draw"] = FreqDist(tokenizer("second text"))
dist["lose"] = FreqDist(tokenizer("third text"))
dist["mixed"] = FreqDist(tokenizer("fourth text"))
# sorted list of 50 most common terms in one of the texts
# (too many terms would be illegible in the graph)
most_common = [item for item, _ in dist["mixed"].most_common(50)]
colors = ["green", "blue", "red", "turquoise"]
# loop over the dictionary keys to plot each distribution
for i, label in enumerate(dist):
frequency = [dist[label][term] for term in most_common]
color = colors[i]
plt.plot(frequency, color=color, label=label)
plt.gca().grid(True)
plt.xticks(np.arange(0, len(most_common), 1), most_common, rotation=90)
plt.xlabel("Most common terms")
plt.ylabel("Frequency")
plt.legend(loc="upper right")
plt.show()
【讨论】:
【参考方案2】:我想通了,如果有人感兴趣的话;您需要获取单独的频率分布并将它们输入到字典中,其中包含所有 FreqDist 共有的键和表示每个 FreqDist 结果的值元组,然后您需要绘制每个 FreqDist 的值并设置键作为 xvalues,按照您拉出它们的相同顺序。
win = FreqDist([tag for word, tag in win]) # 'win', 'draw', 'lose' and 'mixed' are already POS tagged (lists of tuples ('the', 'DT'))
draw = FreqDist([tag for word, tag in draw])
lose = FreqDist([tag for word, tag in lose])
mixed = FreqDist([tag for word, tag in mixed])
POS = [item for item in win] # list of common keys
results =
for key in POS:
results[key] = tuple([win[key], draw[key], lose[key], mixed[key]]) # one key, tuple of values for each FreqDist (in order)
win_counts = [results[item][0] for item in results]
draw_counts = [results[item][1] for item in results]
lose_counts = [results[item][2] for item in results]
mixed_counts = [results[item][3] for item in results]
display = [item for item in results] # over-cautious, same as POS above
plt.plot(win_counts, color='green', label="win") # need to 'import pyplot as plt'
plt.plot(draw_counts, color='blue', label="draw")
plt.plot(lose_counts, color='red', label="lose")
plt.plot(mixed_counts, color='turquoise', label="mixed")
plt.gca().grid(True)
plt.xticks(np.arange(0, len(display), 1), display, rotation=45) # will put keys as x values
plt.xlabel("Parts of Speech")
plt.ylabel("Counts per 10,000 tweets")
plt.suptitle("Part of Speech Distribution across Pre-Win, Pre-Loss and Pre-Draw Corpora")
plt.legend(loc="upper right")
plt.show()
【讨论】:
【参考方案3】:FreqDist.plot()
方法只是一种方便的方法。
您需要自己编写绘图逻辑(使用matplotlib)以在一个绘图中包含多个频率分布。
FreqDist
的绘图功能的source code 可能是让您入门的神点。 matplotlib 也有很好的tutorial 和初学者指南。
【讨论】:
以上是关于频率分布比较 Python的主要内容,如果未能解决你的问题,请参考以下文章