湖仓一体电商项目(十四):实时任务执行流程
Posted Lansonli
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了湖仓一体电商项目(十四):实时任务执行流程相关的知识,希望对你有一定的参考价值。
文章目录
实时任务执行流程
目前暂时将项目在本地执行,执行顺序如下:
一、准备环境
这里默认HDFS、Hive、HBase、Kafka环境已经准备,启动maxwell组件监控mysql业务库数据:
#在Kafka中创建好对应的kafka topic(已创建的topic,可忽略,避免重复创建)
./kafka-topics.sh --zookeeper node3:2181,node4:2181,node5:2181 --create --topic KAFKA-DB-BUSSINESS-DATA --partitions 3 --replication-factor 3
./kafka-topics.sh --zookeeper node3:2181,node4:2181,node5:2181 --create --topic KAFKA-ODS-TOPIC --partitions 3 --replication-factor 3
./kafka-topics.sh --zookeeper node3:2181,node4:2181,node5:2181 --create --topic KAFKA-DIM-TOPIC --partitions 3 --replication-factor 3
./kafka-topics.sh --zookeeper node3:2181,node4:2181,node5:2181 --create --topic KAFKA-DWD-USER-LOGIN-TOPIC --partitions 3 --replication-factor 3
./kafka-topics.sh --zookeeper node3:2181,node4:2181,node5:2181 --create --topic KAFKA-DWS-USER-LOGIN-WIDE-TOPIC --partitions 3 --replication-factor 3
#启动maxwell
[root@node3 ~]# cd /software/maxwell-1.28.2/bin
[root@node3 bin]# maxwell --config ../config.properties
#在Hive中创建好需要的Iceberg各层的表
add jar /software/hive-3.1.2/lib/iceberg-hive-runtime-0.12.1.jar;
add jar /software/hive-3.1.2/lib/libfb303-0.9.3.jar;
CREATE TABLE ODS_MEMBER_INFO (
id string,
user_id string,
member_growth_score string,
member_level string,
balance string,
gmt_create string,
gmt_modified string
)STORED BY 'org.apache.iceberg.mr.hive.HiveIcebergStorageHandler'
LOCATION 'hdfs://mycluster/lakehousedata/icebergdb/ODS_MEMBER_INFO/'
TBLPROPERTIES ('iceberg.catalog'='location_based_table',
'write.metadata.delete-after-commit.enabled'= 'true',
'write.metadata.previous-versions-max' = '3'
);
CREATE TABLE ODS_MEMBER_ADDRESS (
id string,
user_id string,
province string,
city string,
area string,
address string,
log string,
lat string,
phone_number string,
consignee_name string,
gmt_create string,
gmt_modified string
)STORED BY 'org.apache.iceberg.mr.hive.HiveIcebergStorageHandler'
LOCATION 'hdfs://mycluster/lakehousedata/icebergdb/ODS_MEMBER_ADDRESS/'
TBLPROPERTIES ('iceberg.catalog'='location_based_table',
'write.metadata.delete-after-commit.enabled'= 'true',
'write.metadata.previous-versions-max' = '3'
);
CREATE TABLE ODS_USER_LOGIN (
id string,
user_id string,
ip string,
login_tm string,
logout_tm string
)STORED BY 'org.apache.iceberg.mr.hive.HiveIcebergStorageHandler'
LOCATION 'hdfs://mycluster/lakehousedata/icebergdb/ODS_USER_LOGIN/'
TBLPROPERTIES ('iceberg.catalog'='location_based_table',
'write.metadata.delete-after-commit.enabled'= 'true',
'write.metadata.previous-versions-max' = '3'
);
CREATE TABLE DWD_USER_LOGIN (
id string,
user_id string,
ip string,
login_tm string,
logout_tm string
)STORED BY 'org.apache.iceberg.mr.hive.HiveIcebergStorageHandler'
LOCATION 'hdfs://mycluster/lakehousedata/icebergdb/DWD_USER_LOGIN/'
TBLPROPERTIES ('iceberg.catalog'='location_based_table',
'write.metadata.delete-after-commit.enabled'= 'true',
'write.metadata.previous-versions-max' = '3'
);
CREATE TABLE DWS_USER_LOGIN (
user_id string,
ip string,
gmt_create string,
login_tm string,
logout_tm string,
member_level string,
province string,
city string,
area string,
address string,
member_points string,
balance string,
member_growth_score string
)STORED BY 'org.apache.iceberg.mr.hive.HiveIcebergStorageHandler'
LOCATION 'hdfs://mycluster/lakehousedata/icebergdb/DWS_USER_LOGIN/'
TBLPROPERTIES ('iceberg.catalog'='location_based_table',
'write.metadata.delete-after-commit.enabled'= 'true',
'write.metadata.previous-versions-max' = '3'
);
#启动Clickhouse
[root@node1 ~]# service clickhouse-server start
#在Clickhouse中创建好对应表
create table dm_user_login_info(
dt String,
province String,
city String,
user_id String,
login_tm String,
gmt_create String
) engine = MergeTree() order by dt;
二、启动Flink代码
依次启动如下Flink代码:”ProduceKafkaDBDataToODS.scala”、“DimDataToHBase.scala”、“ProduceKafkaODSDataToDWD.scala”、“ProduceUserLogInToDWS.scala”、“ProcessUserLoginInfoToDM.scala”代码。各个代码中Kafka Connector属性“scan.startup.mode”设置为“latest-offset”,从最新位置消费数据。
注意:代码执行时可以设置使用内存参数:-Xmx300m -Xms300m
三、启动数据采集接口代码
启动项目“LakeHouseDataPublish”发布数据。
四、启动模拟数据代码
启动项目“LakeHouseMockData”中模拟向数据库中生产数据代码“RTMockDBData.java”。
- 📢博客主页:https://lansonli.blog.csdn.net
- 📢欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!
- 📢本文由 Lansonli 原创,首发于 CSDN博客🙉
- 📢停下休息的时候不要忘了别人还在奔跑,希望大家抓紧时间学习,全力奔赴更美好的生活✨
以上是关于湖仓一体电商项目(十四):实时任务执行流程的主要内容,如果未能解决你的问题,请参考以下文章
湖仓一体电商项目(十五):实时统计商品及一级种类二级种类访问排行业务需求和分层设计及流程图