2022-07-31:给出一个有n个点,m条有向边的图, 你可以施展魔法,把有向边,变成无向边, 比如A到B的有向边,权重为7。施展魔法之后,A和B通过该边到达彼此的代价都是7。 求,允许施展一次魔法

Posted 福大大架构师每日一题

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了2022-07-31:给出一个有n个点,m条有向边的图, 你可以施展魔法,把有向边,变成无向边, 比如A到B的有向边,权重为7。施展魔法之后,A和B通过该边到达彼此的代价都是7。 求,允许施展一次魔法相关的知识,希望对你有一定的参考价值。

2022-07-31:给出一个有n个点,m条有向边的图,
你可以施展魔法,把有向边,变成无向边,
比如A到B的有向边,权重为7。施展魔法之后,A和B通过该边到达彼此的代价都是7。
求,允许施展一次魔法的情况下,1到n的最短路,如果不能到达,输出-1。
n为点数, 每条边用(a,b,v)表示,含义是a到b的这条边,权值为v。
点的数量 <= 10^5,边的数量 <= 2 * 10^5,1 <= 边的权值 <= 10^6。
来自网易。

答案2022-07-31:

单元路径最短算法。dijkstra算法。
点扩充,边扩充。

代码用rust编写。代码如下:

use rand::Rng;
fn main() 
    let nn: i32 = 20;
    let vv: i32 = 30;
    let test_time: i32 = 2000;
    println!("测试开始");
    for _ in 0..test_time 
        let n = rand::thread_rng().gen_range(0, nn) + 2;
        let mut roads = random_roads(n, vv);
        let ans1 = min1(n, &mut roads);
        let ans2 = min2(n, &mut roads);
        if ans1 != ans2 
            println!("ans1 = ", ans1);
            println!("ans2 = ", ans2);
            println!("roads = :?", roads);
            println!("出错了!");
            break;
        
    
    println!("测试结束");


// 为了测试
// 相对暴力的解
// 尝试每条有向边,都变一次无向边,然后跑一次dijkstra算法
// 那么其中一定有最好的答案
fn min1(n: i32, roads: &mut Vec<Vec<i32>>) -> i32 
    let mut ans = 2147483647;
    for i in 0..roads.len() as i32 
        let mut graph: Vec<Vec<Vec<i32>>> = vec![];
        for _ in 0..=n 
            graph.push(vec![]);
        
        graph[roads[i as usize][1] as usize].push(vec![roads[i as usize][0], roads[i as usize][2]]);
        for r in roads.iter() 
            graph[r[0] as usize].push(vec![r[1], r[2]]);
        
        ans = get_min(ans, dijkstra1(n, &mut graph));
    
    return if ans == 2147483647  -1  else  ans ;


fn get_min<T: Clone + Copy + std::cmp::PartialOrd>(a: T, b: T) -> T 
    if a < b 
        a
     else 
        b
    


fn dijkstra1(n: i32, graph: &mut Vec<Vec<Vec<i32>>>) -> i32 
    let mut heap: Vec<Vec<i32>> = vec![];
    let mut visited: Vec<bool> = vec![];
    for _ in 0..n + 1 
        visited.push(false);
    
    heap.push(vec![1, 0]);
    let mut ans = 2147483647;
    while heap.len() > 0 
        heap.sort_by(|a, b| (b[1].cmp(&a[1])));
        let cur = heap.pop().unwrap();
        if cur[0] == n 
            ans = cur[1];
            break;
        
        if visited[cur[0] as usize] 
            continue;
        
        visited[cur[0] as usize] = true;
        for edge in graph[cur[0] as usize].iter() 
            let to = edge[0];
            let weight = edge[1];
            if !visited[to as usize] 
                heap.push(vec![to, cur[1] + weight]);
            
        
    
    return ans;


// 最优解
// 时间复杂度O(N * logN)
// N <= 2 * 10^5
fn min2(n: i32, roads: &mut Vec<Vec<i32>>) -> i32 
    let mut graph: Vec<Vec<Vec<i32>>> = vec![];
    for _ in 0..=n 
        graph.push(vec![]);
    
    for r in roads.iter() 
        graph[r[0] as usize].push(vec![0, r[1], r[2]]);
        graph[r[1] as usize].push(vec![1, r[0], r[2]]);
    
    let mut heap: Vec<Vec<i32>> = vec![];
    let mut visited: Vec<Vec<bool>> = vec![];
    for i in 0..2 
        visited.push(vec![]);
        for _ in 0..n + 1 
            visited[i as usize].push(false);
        
    
    // a -> 0,a   1,a
    // boolean[] visted = new boolean[n+1]
    // visted[i] == true 去过了!从队列里弹出来过了!以后别碰了!
    // visted[i] == false 没去过!第一次从队列里弹出来!当前要处理!
    // 0,1,0 -> 之前没有走过魔法路,当前来到1号出发点,代价是0
    heap.push(vec![0, 1, 0]);
    let mut ans = 2147483647;
    while heap.len() > 0 
        heap.sort_unstable_by(|a, b|b[2].cmp(&a[2]));
        let cur = heap.pop().unwrap();
        if visited[cur[0] as usize][cur[1] as usize] 
            continue;
        
        visited[cur[0] as usize][cur[1] as usize] = true;
        if cur[1] == n 
            ans = get_min(ans, cur[2]);
            if visited[0][n as usize] && visited[1][n as usize] 
                break;
            
        
        for edge in graph[cur[1] as usize].iter() 
            // 当前来到cur
            // 之前有没有走过魔法路径:cur[0] == 0 ,没走过!cur[0] = 1, 走过了
            // 当前来到的点是啥,cur[1],点编号!
            // 之前的总代价是啥?cur[2]
            // cur,往下,能走的,所有的路在哪?
            // 当前的路,叫edge
            // 当前的路,是不是魔法路!edge[0] = 0 , 不是魔法路
            // edge[0] == 1,是魔法路
            // cur[0] + edge[0] == 0
            // 路 :0 5 20
            // 当前路,不是魔法路,去往的点是5号点,该路权重是20
            // 路 :1 7 13
            // 当前路,是魔法路,去往的点是7号点,该路权重是13
            if cur[0] + edge[0] == 0 
                if !visited[0][edge[1] as usize] 
                    heap.push(vec![0, edge[1], cur[2] + edge[2]]);
                
            
            // cur[0] + edge[0] == 1
            // 0         1
            // 1         0
            if cur[0] + edge[0] == 1 
                if !visited[1][edge[1] as usize] 
                    heap.push(vec![1, edge[1], cur[2] + edge[2]]);
                
            
            // 1 1 == 2
        
    
    return if ans == 2147483647  -1  else  ans ;


// 为了测试
fn random_roads(n: i32, v: i32) -> Vec<Vec<i32>> 
    let m = rand::thread_rng().gen_range(0, n * (n - 1) / 2) + 1;
    let mut roads: Vec<Vec<i32>> = vec![];
    for i in 0..m 
        roads.push(vec![]);
        for _ in 0..3 
            roads[i as usize].push(0);
        
    
    for i in 0..m 
        roads[i as usize][0] = rand::thread_rng().gen_range(0, n) + 1;
        roads[i as usize][1] = rand::thread_rng().gen_range(0, n) + 1;
        roads[i as usize][2] = rand::thread_rng().gen_range(0, v) + 1;
    
    return roads;


执行结果如下:

代码用go编写。代码如下:

package main

import (
	"fmt"
	"math/rand"
	"sort"
	"time"
)

func main() 
	rand.Seed(time.Now().Unix())
	N := 20
	V := 30
	testTime := 2000
	fmt.Println("测试开始")
	for i := 0; i < testTime; i++ 
		n := rand.Intn(N) + 2
		roads := randomRoads(n, V)
		ans1 := min1(n, roads)
		ans2 := min2(n, roads)
		if ans1 != ans2 
			fmt.Println("出错了!")
			fmt.Println("roads = ", roads)
			fmt.Println("ans1 = ", ans1)
			fmt.Println("ans2 = ", ans2)
			fmt.Println("-----------")
			break
		
	
	fmt.Println("测试结束")


// 为了测试
// 相对暴力的解
// 尝试每条有向边,都变一次无向边,然后跑一次dijkstra算法
// 那么其中一定有最好的答案
func min1(n int, roads [][]int) int 
	ans := 2147483647
	for i := 0; i < len(roads); i++ 
		graph := make([][][]int, 0)
		for j := 0; j <= n; j++ 
			graph = append(graph, make([][]int, 0))
		
		graph[roads[i][1]] = append(graph[roads[i][1]], []introads[i][0], roads[i][2])
		for _, r := range roads 
			graph[r[0]] = append(graph[r[0]], []intr[1], r[2])
		
		ans = getMin(ans, dijkstra1(n, graph))
	
	if ans == 2147483647 
		return -1
	 else 
		return ans
	


func getMin(a, b int) int 
	if a < b 
		return a
	 else 
		return b
	


func dijkstra1(n int, graph [][][]int) int 
	heap0 := make([][]int, 0)
	visited := make([]bool, n+1)
	heap0 = append(heap0, []int1, 0)
	ans := 2147483647
	for len(heap0) > 0 
		sort.Slice(heap0, func(i, j int) bool 
			a := heap0[i]
			b := heap0[j]
			return a[1] < b[1]
		以上是关于2022-07-31:给出一个有n个点,m条有向边的图, 你可以施展魔法,把有向边,变成无向边, 比如A到B的有向边,权重为7。施展魔法之后,A和B通过该边到达彼此的代价都是7。 求,允许施展一次魔法的主要内容,如果未能解决你的问题,请参考以下文章

图的基本存储的基本方式二

图的基本存储的基本方式一

[CF903G] Yet Another Maxflow Problem

Codeforces 786B(区间图最短路)

hdu4781 Assignment For Princess(构造)

SDOJ 3740 Graph