Miller Rabin算法的算法理论基础
Posted
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Miller Rabin算法的算法理论基础相关的知识,希望对你有一定的参考价值。
参考技术AMiller-Rabin算法是Fermat算法的一个变形改进,它的理论基础是由Fermat定理引申而来。 Fermat 定理: n是一个奇素数,a是任何整数(1≤ a≤n-1) ,则 a^(n-1)≡1(mod n)。 Miller-Rabin 算法的理论基础:如果n是一个奇素数, 将n-1表示成2^s*r的形式(r是奇 数),a 是和n互素的任何整数, 那么a^r≡1(mod n) 或者对某个j(0≤j ≤s -1, j∈Z) 等式 a^(2^j*r) ≡-1(mod n)成立。 这个理论是通过一个事实经由Fermat定理推导而来: n是一个奇素数,则方程x^2 ≡ 1 mod n只有±1两个解。
Miller Rabin算法的简介
参考技术AMiller-Rabin算法是目前主流的基于概率的素数测试算法,在构建密码安全体系中占有重要的地位。通过比较各种素数测试算法和对Miller-Rabin算法进行的仔细研究,证明在计算机中构建密码安全体系时, Miller-Rain算法是完成素数测试的最佳选择。通过对Miller-Rabin 算 法底层运算的优化,可以取得较以往实现更好的性能。 随着信息技术的发展、网络的普及和电子商务的开展, 信息安全逐步显示出了其重要性。信息的泄密、伪造、篡改 等问题会给信息的合法拥有者带来重大的损失。在计算机中构建密码安全体系可以提供4种最基本的保护信息安全的服 务:保密性、数据完整性、鉴别、抗抵赖性,从而可以很大 程度上保护用户的数据安全。在密码安全体系中,公开密钥 算法在密钥交换、密钥管理、身份认证等问题的处理上极其有效,因此在整个体系中占有重要的地位。目前的公开密钥 算法大部分基于大整数分解、有限域上的离散对数问题和椭 圆曲线上的离散对数问题,这些数学难题的构建大部分都需 要生成一种超大的素数,尤其在经典的RSA算法中,生成的素数的质量对系统的安全性有很大的影响。目前大素数的生 成,尤其是随机大素数的生成主要是使用素数测试算法,本 文主要针对目前主流的Miller-Rabin 算法进行全面系统的分析 和研究,并对其实现进行了优化。
以上是关于Miller Rabin算法的算法理论基础的主要内容,如果未能解决你的问题,请参考以下文章