1.基于Label studio的训练数据标注指南:信息抽取(实体关系抽取)文本分类等

Posted

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了1.基于Label studio的训练数据标注指南:信息抽取(实体关系抽取)文本分类等相关的知识,希望对你有一定的参考价值。

文本抽取任务Label Studio使用指南

1.基于Label studio的训练数据标注指南:信息抽取(实体关系抽取)、文本分类等 2.基于Label studio的训练数据标注指南:(智能文档)文档抽取任务、PDF、表格、图片抽取标注等 3.基于Label studio的训练数据标注指南:文本分类任务 4.基于Label studio的训练数据标注指南:情感分析任务观点词抽取、属性抽取

目录

1. 安装

以下标注示例用到的环境配置:

  • Python 3.8+
  • label-studio == 1.7.1
  • paddleocr >= 2.6.0.1

在终端(terminal)使用pip安装label-studio:

pip install label-studio==1.7.1
pip install label-studio
#安装过程报错ERROR: Could not install packages due to an OSError: [WinError 5] 拒绝访问
#添加管理员权限
pip install --user label-studio
#如果途中出现警告:WARNING: Ignoring invalid distribution -sonschema (d:\\anaconda\\envs\\paddlenlp\\lib\\site-packages)
1.原因可能是之前下载库的时候没有成功或者中途退出,当包出现问题(例如缺少依赖项或与其他包冲突)时,可能会出现此警告消息。如果包与正在使用的 Python 版本不兼容,也可能发生这种情况。
2.到提示的目录site-packages下删除~ip开头的目录。
3.然后pip重新安装库即可。
#如果怕环境冲突就新建虚拟环境,单独安装
conda create -n test  python=3.8 #test为创建的虚拟环境名称

安装完成后,运行以下命令行:

label-studio start

在浏览器打开http://localhost:8080/,输入用户名和密码登录,开始使用label-studio进行标注。

2. 文本抽取任务标注

2.1 项目创建

点击创建(Create)开始创建一个新的项目,填写项目名称、描述,然后选择Object Detection with Bounding Boxes

  • 填写项目名称、描述

  • 命名实体识别、关系抽取、事件抽取、实体/评价维度分类任务选择``Relation Extraction`。

  • 文本分类、句子级情感倾向分类任务选择Text Classification

  • 添加标签(也可跳过后续在Setting/Labeling Interface中配置)

图中展示了实体类型标签的构建,其他类型标签的构建可参考2.3标签构建

2.2 数据上传

先从本地上传txt格式文件,选择List of tasks,然后选择导入本项目。

2.3 标签构建

  • Span类型标签

  • Relation类型标签

Relation XML模板:

  <Relations>
    <Relation value="歌手"/>
    <Relation value="发行时间"/>
    <Relation value="所属专辑"/>
  </Relations>
  • 分类类别标签

2.4 任务标注

  • 实体抽取

标注示例:

该标注示例对应的schema为:

schema = [
    时间,
    选手,
    赛事名称,
    得分
]
  • 关系抽取

对于关系抽取,其P的类型设置十分重要,需要遵循以下原则

“S的P为O”需要能够构成语义合理的短语。比如对于三元组(S, 父子, O),关系类别为父子是没有问题的。但按照UIE当前关系类型prompt的构造方式,“S的父子为O”这个表达不是很通顺,因此P改成孩子更好,即“S的孩子为O”。合理的P类型设置,将显著提升零样本效果

该标注示例对应的schema为:

schema = 
    作品名: [
        歌手,
        发行时间,
        所属专辑
    ]

  • 事件抽取

该标注示例对应的schema为:

schema = 
    地震触发词: [
        时间,
        震级
    ]

该标注示例对应的schema为:

schema = 情感倾向[正向,负向]
  • 实体/评价维度分类

该标注示例对应的schema为:

schema = 
    评价维度: [
        观点词,
        情感倾向[正向,负向]
    ]

2.5 数据导出

勾选已标注文本ID,选择导出的文件类型为JSON,导出数据:

2.6 数据转换

将导出的文件重命名为label_studio.json后,放入./data目录下。通过label_studio.py脚本可转为UIE的数据格式。

  • 抽取式任务
python label_studio.py \\
    --label_studio_file ./data/label_studio.json \\
    --save_dir ./data \\
    --splits 0.8 0.1 0.1 \\
    --task_type ext
  • 句子级分类任务

在数据转换阶段,我们会自动构造用于模型训练的prompt信息。例如句子级情感分类中,prompt为情感倾向[正向,负向],可以通过prompt_prefixoptions参数进行配置。

python label_studio.py \\
    --label_studio_file ./data/label_studio.json \\
    --task_type cls \\
    --save_dir ./data \\
    --splits 0.8 0.1 0.1 \\
    --prompt_prefix "情感倾向" \\
    --options "正向" "负向"
  • 实体/评价维度分类任务

在数据转换阶段,我们会自动构造用于模型训练的prompt信息。例如评价维度情感分类中,prompt为XXX的情感倾向[正向,负向],可以通过prompt_prefixoptions参数进行声明。

python label_studio.py \\
    --label_studio_file ./data/label_studio.json \\
    --task_type ext \\
    --save_dir ./data \\
    --splits 0.8 0.1 0.1 \\
    --prompt_prefix "情感倾向" \\
    --options "正向" "负向" \\
    --separator "##"

2.7 更多配置

  • label_studio_file: 从label studio导出的数据标注文件。
  • save_dir: 训练数据的保存目录,默认存储在data目录下。
  • negative_ratio: 最大负例比例,该参数只对抽取类型任务有效,适当构造负例可提升模型效果。负例数量和实际的标签数量有关,最大负例数量 = negative_ratio * 正例数量。该参数只对训练集有效,默认为5。为了保证评估指标的准确性,验证集和测试集默认构造全负例。
  • splits: 划分数据集时训练集、验证集所占的比例。默认为[0.8, 0.1, 0.1]表示按照8:1:1的比例将数据划分为训练集、验证集和测试集。
  • task_type: 选择任务类型,可选有抽取和分类两种类型的任务。
  • options: 指定分类任务的类别标签,该参数只对分类类型任务有效。默认为["正向", "负向"]。
  • prompt_prefix: 声明分类任务的prompt前缀信息,该参数只对分类类型任务有效。默认为"情感倾向"。
  • is_shuffle: 是否对数据集进行随机打散,默认为True。
  • seed: 随机种子,默认为1000.
  • schema_lang:选择schema的语言,将会应该训练数据prompt的构造方式,可选有chen。默认为ch
  • separator: 实体类别/评价维度与分类标签的分隔符,该参数只对实体/评价维度分类任务有效。默认为"##"。

备注:

  • 默认情况下 label_studio.py 脚本会按照比例将数据划分为 train/dev/test 数据集
  • 每次执行 label_studio.py 脚本,将会覆盖已有的同名数据文件
  • 在模型训练阶段我们推荐构造一些负例以提升模型效果,在数据转换阶段我们内置了这一功能。可通过negative_ratio控制自动构造的负样本比例;负样本数量 = negative_ratio * 正样本数量。
  • 对于从label_studio导出的文件,默认文件中的每条数据都是经过人工正确标注的。

References

以上是关于1.基于Label studio的训练数据标注指南:信息抽取(实体关系抽取)文本分类等的主要内容,如果未能解决你的问题,请参考以下文章

3.基于Label studio的训练数据标注指南:文本分类任务

3.基于Label studio的训练数据标注指南:文本分类任务

1.基于Label studio的训练数据标注指南:信息抽取(实体关系抽取)文本分类等

4.基于Label studio的训练数据标注指南:情感分析任务观点词抽取属性抽取

2.基于Label studio的训练数据标注指南:(智能文档)文档抽取任务PDF表格图片抽取标注等

论文阅读MONAI Label:人工智能辅助的 3D 医学图像交互式标注框架