C++ 并行就地基数排序

Posted

技术标签:

【中文标题】C++ 并行就地基数排序【英文标题】:C++ parallel in place radix sort 【发布时间】:2016-03-07 13:30:07 【问题描述】:

我正在尝试使用基数 256 实现并行就地基数排序。在我看来,函数 srt 在单线程中运行良好。但是,当更多线程用于随机数据时,有时会出现错误:“访问冲突读取位置”后跟函数 srt 的“标记 [索引]”地址。它在函数 srt 中的第 15 行中断,即“tmp = marker[index]”,其中 index 的值为 63。任何人都可以解释发生了什么吗?

inline
void count(unsigned* list, int size, int* histogram) 
    for (int i = 0; i < size; ++i) 
        ++histogram[(list[i]>>24)];
    

void srt(int* histogram, unsigned** marker) 
    static const int bin_size = 256;
    int left = histogram[0];
    int index;
    int tmp;
    while (left-- > 0) 
        index = *marker[0] >> 24;
        while (index != 0) 
            tmp = *marker[index];
            *marker[index]++ = *marker[0];
            *marker[0] = tmp;
            index = *marker[0] >> 24;
        
        ++marker[0];
    
    for (int k = 1; k < bin_size; ++k) 
        left = histogram[k] - (marker[k] - marker[k - 1]);
        while (left-- > 0) 
            index = *marker[k] >> 24;
            while (index != k) 
                tmp = *marker[index];
                *marker[index]++ = *marker[k];
                *marker[k] = tmp;
                index = *marker[k] >> 24;
            
            ++marker[k];
        
    

void parallel_sort(unsigned* list, int size) 
    //Build histogram
    static const int bin_size = 256;
    int histogram[bin_size] =  0 ;
    int histogram1[bin_size] =  0 ;
    int histogram2[bin_size] =  0 ;
    int histogram3[bin_size] =  0 ;
    const int partial_size = size / 4;
    count(list, partial_size, histogram);
    count(&list[partial_size], partial_size, histogram1);
    count(&list[2 * partial_size], partial_size, histogram2);
    count(&list[3 * partial_size], partial_size + (size % 4), histogram3);
    unsigned int* marker[bin_size];
    unsigned int* marker1[bin_size];
    unsigned int* marker2[bin_size];
    unsigned int* marker3[bin_size];
    unsigned int* previous = list;
    for ( int i = 0; i < bin_size; ++i ) 
        marker[i] = previous;
        marker1[i] = marker[i] + histogram[i];
        marker2[i] = marker1[i] + histogram1[i];
        marker3[i] = marker2[i] + histogram2[i];
        previous = marker3[i] + histogram3[i];
    
    //Breaks in srt in any of those threads
    thread t21(srt, histogram1, marker1);
    thread t22(srt, histogram2, marker2);
    thread t23(srt, histogram3, marker3);
    srt(histogram, marker);
    t21.join();
    t22.join();
    t23.join();
//TODO

int main() 
    const int size = 100000;
    unsigned list[size];
    srand(time(NULL));
    for (int i = 0;i < size;++i) 
        list[i] = rand()*rand();
    
    parallel_sort(list, size);

我正在使用 i3 dell、Windows 10、Visual Studio 2015 和以下选项

/MP /GS /analyze- /W3 /Zc:wchar_t /ZI /Gm /Od /sdl /Fd"Debug\vc140.pdb" /Zc:inline /fp:precise /D "_MBCS" /errorReport:prompt /WX- /Zc:forScope /RTC1 /Gd /Oy- /MDd /Fa"Debug\" /EHsc /nologo /Fo"Debug\" /Fp"

【问题讨论】:

如果你可以调试你的代码(带断点),它会更容易找到它崩溃的地方 在函数 srt 中,在索引为 63 的 "tmp=*marker[index]" 中。 嗯,您正在使用 list 初始化您的 marker。那么你在哪里声明list?我认为这是因为您正在做marker2[i] = marker1[i] + histogram1[i]; 和类似的行。想象一下,如果histogram1[i] 有一个非常大的值,使marker2[i] 指向list 之外的东西会怎样? 感谢帮助。这个带有标记的想法是错误的。 你可以使用这种基数排序并忘记它codereview.stackexchange.com/questions/255443/… 【参考方案1】:

问题出在这里:

int main() 
    const int size = 100000;
    unsigned list[size];
    srand(time(NULL));
    for (int i = 0;i < size;++i) 
        list[i] = rand()*rand();
    
    parallel_sort(list, size);

如果list[i] = rand()*rand(); 产生的数字大于size 100,000 怎么办?您的marker 数组指针绝对会超出list 的界限,这就是您的程序崩溃的原因。

总而言之,您应该确保所有要排序的值都在数组最大大小以下,因为您使用的是基数排序。

【讨论】:

请注意,这只是基数排序的第一遍,它基于前导 8 位构建直方图。 (它使用 >> 24 删除后续位。)这就是每个直方图的大小为 256 的原因。【参考方案2】:

尝试下面的并行基数代码:

#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <assert.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>
#include <sys/time.h>

enum errors 
  INVALID_USAGE,
  ERROR_OPENING_INPUT,
  ERROR_OPENING_OUTPUT,
  INVALID_FORMAT,
  MEMORY_ERROR,
  THREAD_CREATE_ERROR,
  THREAD_JOIN_ERROR
;

const unsigned char KEY_LENGTH = 7;
const unsigned char CHARKEY_LENGTH = KEY_LENGTH + 1;
const unsigned short INPUT_SPACE = 256;

struct thread_info

  unsigned char **input;
  unsigned char **output;
  unsigned short thread_idx;
  unsigned int first_idx;
  unsigned int last_idx;
  pthread_barrier_t *barrier;
  unsigned int *local_counters; // array of array of integer
  unsigned int thread_count;
;

inline unsigned int coordinate(const unsigned int line)

  return (line * CHARKEY_LENGTH);


// map each string of the memory array input to a pointer in output
inline void map_strings(unsigned char *const input, unsigned char 
**output, const unsigned int size)

  for(unsigned int i = 0; i < size; ++i)
    output[i] = &(input[coordinate(i)]);
  


inline unsigned short core_count()

  // Linux, Solaris, AIX, etc:
  return (unsigned short)sysconf(_SC_NPROCESSORS_ONLN);


void print_usage(const char *const prog_name)

  fprintf(stderr, "Usage: "
                  "%s input_file ouput_file\n", prog_name);


/*
  counter the occurences of each char in input at radix i
  first_idx and last_idx define the range of the input where the count 
is needed
  the result is stored in counter
 */
inline void count_char(const unsigned char *const *const input,
                       const unsigned int first_idx,
                       const unsigned int last_idx,
                       const unsigned int radix,
                       unsigned int *counter)

  memset(counter, 0, INPUT_SPACE*sizeof(unsigned int));
  for(unsigned int i = first_idx; i < last_idx; ++i)
    const unsigned char c = input[i][radix];
    ++(counter[c]);
  


/* compute the offset of the current thread
   local_counters: array of all coutners
   thread_idx: current thread idx
   thread_count: number of thread
   offset: the array which is populated with the offset
*/
inline void compute_offset(const unsigned int *const local_counters,
                           const unsigned int thread_idx,
                           const unsigned int thread_count,
                           unsigned int *const offset)
  unsigned int local_offset[INPUT_SPACE];
  unsigned int global_counter[INPUT_SPACE];
  for(unsigned int i = 0; i < INPUT_SPACE; ++i)
    global_counter[i] = 0;
    for(unsigned int thread_i = 0; thread_i < thread_count; ++thread_i)

      if (thread_idx == thread_i)
        local_offset[i] = global_counter[i];
      
      const unsigned int value = local_counters[thread_i*INPUT_SPACE + 
i];
      global_counter[i] += value;
    
  
  unsigned int previous_offset = 0;
  for(unsigned int i = 1; i < INPUT_SPACE; ++i)
    previous_offset += global_counter[i-1];
    offset[i] = previous_offset + local_offset[i];
  


inline void sort_input(unsigned char *const *const input,
                       unsigned int *const offset,
                       const unsigned int first_idx,
                       const unsigned int last_idx,
                       const unsigned int radix,
                       unsigned char **const output)
  for(unsigned int i = first_idx; i < last_idx; ++i)
    const unsigned char c = input[i][radix];
    const unsigned int current_offset = offset[c]++;
    output[current_offset] = input[i];
  


void *concurrent_radix(void *arg)

  thread_info *const info = (thread_info*)arg;
  const unsigned short thread_idx = info->thread_idx;
  const unsigned int first_idx = info->first_idx;
  const unsigned int last_idx = info->last_idx;
  const unsigned int thread_count = info->thread_count;
  unsigned int *const local_counters = info->local_counters;
  unsigned char **input = info->input;
  unsigned char **output = info->output;
  pthread_barrier_t *const barrier = info->barrier;
  unsigned int *const counter = &(local_counters[thread_idx * 
INPUT_SPACE]);
  int radix = KEY_LENGTH - 1;
  do 
    count_char(input, first_idx, last_idx, radix, counter);

    pthread_barrier_wait(barrier);

    unsigned int offset[INPUT_SPACE];
    compute_offset(local_counters, thread_idx, thread_count, offset);
    sort_input(input, offset, first_idx, last_idx, radix, output);

    pthread_barrier_wait(barrier);

    unsigned char **const temp = input;
    input = output;
    output = temp;
    --radix;
   while(radix >= 0);
  return NULL;


// sort the radix index
inline void threaded_radix (unsigned char **input, unsigned char 
**output, const unsigned int nb_keys)

  const unsigned short nb_core = core_count();

  pthread_t threads[nb_core];
  thread_info threads_arg[nb_core];
  unsigned int local_counters[nb_core * INPUT_SPACE];

  pthread_barrier_t barrier;
  pthread_barrier_init(&barrier, NULL, nb_core);

  const unsigned int range = nb_keys / nb_core;
  unsigned int last_idx = 0;
  for (unsigned short i = 0; i < nb_core; ++i)
    const unsigned int first_idx = last_idx;
    last_idx = last_idx + range;

thread_info &info = threads_arg[i];
info.input = input;
info.output = output;
info.first_idx = first_idx;
info.last_idx = last_idx;
info.thread_idx = i;
info.thread_count = nb_core;
info.local_counters = local_counters;
info.barrier = &barrier;
  
  threads_arg[nb_core-1].last_idx = nb_keys;

  for (unsigned short i = 1; i < nb_core; ++i)
    pthread_create(&threads[i], NULL, concurrent_radix, (void *)&
(threads_arg[i]));
  
  concurrent_radix((void *)&(threads_arg[0]));

  for (unsigned short i = 1; i < nb_core; ++i)
    pthread_join(threads[i], NULL);
  
  pthread_barrier_destroy(&barrier);


inline void radix_sort(unsigned char *input, unsigned char **output, 
const unsigned int nb_keys)

  unsigned char **buffer = (unsigned char **)malloc(nb_keys * 
sizeof(unsigned char*));
  map_strings(input, buffer, nb_keys);
  threaded_radix(buffer, output, nb_keys);

  free(buffer);


int main(const int argc, const char *const argv[])

  if(argc < 3) 
    print_usage(argv[0]);
    return INVALID_USAGE;
  
  // import the data in a table
  FILE *input = fopen(argv[1], "r");
  if(!input)
    const int errsv = errno;
fprintf(stderr, "%s: %s\n", argv[1], strerror(errsv));
    print_usage(argv[0]);
    return ERROR_OPENING_INPUT;
  

  unsigned int input_size;
  
    int converted = fscanf(input, "%d\n", &input_size);
    if(converted != 1)
      fprintf(stderr, "Invalid file format");
      return INVALID_FORMAT;
    
  

  unsigned char *input_table = (unsigned char *)malloc(input_size * 
CHARKEY_LENGTH * sizeof(unsigned char));
  unsigned char **output_table = (unsigned char **)malloc(input_size * 
sizeof(unsigned char*));
  if(!input_table || !output_table)
    fprintf(stderr, "Error: not enough memory\n");
    return MEMORY_ERROR;
  

  for(unsigned int i = 0; i<input_size; ++i)
unsigned char * key = &(input_table[coordinate(i)]);
size_t size_read = fread(key, 1, CHARKEY_LENGTH, input);
key[KEY_LENGTH] = '\0';
    if(size_read != CHARKEY_LENGTH)
      if(feof(input))
        assert(i == (input_size - 1));
       else 
        fprintf(stderr, "Invalid file format");
        return INVALID_FORMAT;
      
    
  
  fclose(input);

  // sort
  struct timeval tick1, tick2;
  gettimeofday(&tick1, NULL);

  radix_sort(input_table, output_table, input_size);

  gettimeofday(&tick2, NULL);
  const double ellapsed = (tick2.tv_sec + tick2.tv_usec/1000000.0) - 
(tick1.tv_sec + tick1.tv_usec/1000000.0);
  printf("time for action = %g seconds\n", ellapsed);

  // write the output
  FILE *output = fopen(argv[2], "w+");
  if(!input)
const int errsv = errno;
    fprintf(stderr, "%s: %s\n", argv[2], strerror(errsv));
    print_usage(argv[0]);
    return ERROR_OPENING_OUTPUT;
  

  fprintf(output, "%d\n", input_size);
  for(unsigned int i = 0; i < input_size;++i)
    fprintf(output, "%s\n", output_table[i]);
  
  fclose(output);

  free(input_table);
  free(output_table);

  return 0;

不要忘记添加选项 -pthread 来编译它。

【讨论】:

&gt;-pthread &gt;Visual Studio 2015... 我应该告诉为什么这对 OP 完全没用吗?

以上是关于C++ 并行就地基数排序的主要内容,如果未能解决你的问题,请参考以下文章

“就地”MSD 基数排序、堆栈空间和堆栈溢出

基数排序及其并行化

基数排序的并行版本未按预期运行(Java)

使用 OpenMP 并行化 C 中的基数排序

基数排序

使用 CUDA 在 C 中并行化基数排序的问题