Pandas - 计算所有列的 z 分数
Posted
技术标签:
【中文标题】Pandas - 计算所有列的 z 分数【英文标题】:Pandas - Compute z-score for all columns 【发布时间】:2014-09-05 20:56:38 【问题描述】:我有一个包含单列 ID 的数据框,所有其他列都是我想要计算 z 分数的数值。这是它的一个小节:
ID Age BMI Risk Factor
PT 6 48 19.3 4
PT 8 43 20.9 NaN
PT 2 39 18.1 3
PT 9 41 19.5 NaN
我的某些列包含 NaN 值,我不想将其包含在 z 分数计算中,因此我打算使用针对此问题提供的解决方案:how to zscore normalize pandas column with nans?
df['zscore'] = (df.a - df.a.mean())/df.a.std(ddof=0)
我有兴趣将此解决方案应用于除 ID 列之外的所有列,以生成一个新数据框,我可以使用该数据框将其保存为 Excel 文件
df2.to_excel("Z-Scores.xlsx")
基本上是这样;如何计算每列的 z 分数(忽略 NaN 值)并将所有内容推送到新数据框中?
旁注:pandas 中有一个叫做“索引”的概念让我感到害怕,因为我不太了解它。如果索引是解决此问题的关键部分,请简化您对索引的解释。
【问题讨论】:
您对索引有什么不了解? 我认为它类似于 SQL 数据库中主键的概念,您可以在其中设置一个标识符,让您可以引用一行中的值;但我什至不确定。我也不明白什么时候要设置索引。 索引的概念与 SQL 表没有什么不同,但与聚集索引不同的是,多索引会有不同的级别,例如按性别、年龄、体重进行分组。另一个概念是标签索引,您的索引可以是任何东西,字符串,日期,整数等。您可以使用标签索引或整数值进行索引:pandas.pydata.org/pandas-docs/stable/… 有趣;一旦我掌握了它,这听起来可能真的很有用。我仍然对文档中所有不熟悉的行话感到害怕,但现在肯定感觉更容易理解了。再次感谢。 (可能为时已晚,无法为您提供帮助。)df.set_index(['ID'])
的一大优势是您现在无需单独处理该列的所有麻烦。
【参考方案1】:
从列中构建一个列表并删除您不想为其计算 Z 分数的列:
In [66]:
cols = list(df.columns)
cols.remove('ID')
df[cols]
Out[66]:
Age BMI Risk Factor
0 6 48 19.3 4
1 8 43 20.9 NaN
2 2 39 18.1 3
3 9 41 19.5 NaN
In [68]:
# now iterate over the remaining columns and create a new zscore column
for col in cols:
col_zscore = col + '_zscore'
df[col_zscore] = (df[col] - df[col].mean())/df[col].std(ddof=0)
df
Out[68]:
ID Age BMI Risk Factor Age_zscore BMI_zscore Risk_zscore \
0 PT 6 48 19.3 4 -0.093250 1.569614 -0.150946
1 PT 8 43 20.9 NaN 0.652753 0.074744 1.459148
2 PT 2 39 18.1 3 -1.585258 -1.121153 -1.358517
3 PT 9 41 19.5 NaN 1.025755 -0.523205 0.050315
Factor_zscore
0 1
1 NaN
2 -1
3 NaN
【讨论】:
有没有办法在没有 for 循环的情况下做到这一点? (假设您不需要删除其中一列...) @AlexLenail 3 年后再次查看此内容,您可以定义一个func
并使用 apply
调用此函数,因为这是 for
循环的语法糖
@RyszardCetnarski 查看解释 statsdirect.com/help/basics/degrees_freedom.htm 和 stats.stackexchange.com/questions/58230/… 这取决于您的用例
除非我遗漏了什么,@Manuel 下面的答案(使用 scipy 的 zscore 函数)应该更好:没有循环,使用现有函数,而且更简洁。为什么要重新发明***并在代码中添加更多行呢?
@EdChum:这很有道理——我不认为这是一个糟糕的答案;相反,SE 的目的是在顶部获得可能的最佳答案。所以,我的评论是引导人们采用更新的方法,即使 OP 没有回来更新他的选择。或者,我看到受访者将后来的答案合并到他们的答案中,将添加该回复的人归功于(再次考虑 SE 的哲学)。因此,您可以添加 scipy 元素(不删除您的元素)并归功于 Manuel。【参考方案2】:
几乎单线解决方案:
df2 = (df.ix[:,1:] - df.ix[:,1:].mean()) / df.ix[:,1:].std()
df2['ID'] = df['ID']
【讨论】:
几乎是单线也就是两线 :) 一个班轮df2 = df2.assign(ID=(df.ix[:,1:] - df.ix[:,1:].mean()) / df.ix[:,1:].std())
【参考方案3】:
使用Scipy's zscore函数:
df = pd.DataFrame(np.random.randint(100, 200, size=(5, 3)), columns=['A', 'B', 'C'])
df
| | A | B | C |
|---:|----:|----:|----:|
| 0 | 163 | 163 | 159 |
| 1 | 120 | 153 | 181 |
| 2 | 130 | 199 | 108 |
| 3 | 108 | 188 | 157 |
| 4 | 109 | 171 | 119 |
from scipy.stats import zscore
df.apply(zscore)
| | A | B | C |
|---:|----------:|----------:|----------:|
| 0 | 1.83447 | -0.708023 | 0.523362 |
| 1 | -0.297482 | -1.30804 | 1.3342 |
| 2 | 0.198321 | 1.45205 | -1.35632 |
| 3 | -0.892446 | 0.792025 | 0.449649 |
| 4 | -0.842866 | -0.228007 | -0.950897 |
如果不是数据框的所有列都是数字,那么您可以使用 select_dtypes
函数将 Z 分数函数仅应用于数字列:
# Note that `select_dtypes` returns a data frame. We are selecting only the columns
numeric_cols = df.select_dtypes(include=[np.number]).columns
df[numeric_cols].apply(zscore)
| | A | B | C |
|---:|----------:|----------:|----------:|
| 0 | 1.83447 | -0.708023 | 0.523362 |
| 1 | -0.297482 | -1.30804 | 1.3342 |
| 2 | 0.198321 | 1.45205 | -1.35632 |
| 3 | -0.892446 | 0.792025 | 0.449649 |
| 4 | -0.842866 | -0.228007 | -0.950897 |
【讨论】:
如何apply
原位而不是返回一个新副本?
@chandresh,apply
没有inplace
参数,所以不能用函数结果替换列数据。你应该检查这个问题:***.com/questions/45570984/…【参考方案4】:
如果你想计算所有列的 zscore,你可以使用以下方法:
df_zscore = (df - df.mean())/df.std()
【讨论】:
奇怪的是,无论如何,对我来说,这个分数计算给出的结果与“from scipy.stats import zscore; df.apply(zscore)”略有不同。有人知道为什么吗? @pitosalas:std
函数的默认 ddof
可能不同
@pitosalas:@ascripter,你是对的。传递df.std(ddof=0)
产生与df.apply(scipy.stats.zscore)
相同的结果
pandas 可能不会对非数字 ID 列感到满意,但无论如何它应该是一个索引。我喜欢这个对整个数据框进行操作,而不是像其他答案那样逐列操作。【参考方案5】:
当我们处理时间序列时,计算 z 分数(或异常 - 不是一回事,但您可以轻松地调整此代码)有点复杂。例如,您每周测量 10 年的温度数据。要计算整个时间序列的 z 分数,您必须知道一年中每一天的平均值和标准差。那么,让我们开始吧:
假设您有一个 pandas DataFrame。首先,您需要一个 DateTime 索引。如果您还没有它,但幸运的是您确实有一个包含日期的列,只需将其作为您的索引。 Pandas 会尝试猜测日期格式。这里的目标是拥有 DateTimeIndex。你可以试试看:
type(df.index)
如果你没有,让我们来吧。
df.index = pd.DatetimeIndex(df[datecolumn])
df = df.drop(datecolumn,axis=1)
下一步是计算每组天数的平均值和标准差。为此,我们使用 groupby 方法。
mean = pd.groupby(df,by=[df.index.dayofyear]).aggregate(np.nanmean)
std = pd.groupby(df,by=[df.index.dayofyear]).aggregate(np.nanstd)
最后,我们循环遍历所有的日期,执行计算 (value - mean)/stddev;但是,如前所述,对于时间序列,这并不是那么简单。
df2 = df.copy() #keep a copy for future comparisons
for y in np.unique(df.index.year):
for d in np.unique(df.index.dayofyear):
df2[(df.index.year==y) & (df.index.dayofyear==d)] = (df[(df.index.year==y) & (df.index.dayofyear==d)]- mean.ix[d])/std.ix[d]
df2.index.name = 'date' #this is just to look nicer
df2 #this is your z-score dataset.
for 循环内的逻辑是:对于给定的年份,我们必须将每一年的每一天与其平均值和标准差相匹配。我们在您的时间序列中运行了所有年份。
【讨论】:
【参考方案6】:这是使用自定义函数获取 Zscore 的另一种方法:
In [6]: import pandas as pd; import numpy as np
In [7]: np.random.seed(0) # Fixes the random seed
In [8]: df = pd.DataFrame(np.random.randn(5,3), columns=["randomA", "randomB","randomC"])
In [9]: df # watch output of dataframe
Out[9]:
randomA randomB randomC
0 1.764052 0.400157 0.978738
1 2.240893 1.867558 -0.977278
2 0.950088 -0.151357 -0.103219
3 0.410599 0.144044 1.454274
4 0.761038 0.121675 0.443863
## Create custom function to compute Zscore
In [10]: def z_score(df):
....: df.columns = [x + "_zscore" for x in df.columns.tolist()]
....: return ((df - df.mean())/df.std(ddof=0))
....:
## make sure you filter or select columns of interest before passing dataframe to function
In [11]: z_score(df) # compute Zscore
Out[11]:
randomA_zscore randomB_zscore randomC_zscore
0 0.798350 -0.106335 0.731041
1 1.505002 1.939828 -1.577295
2 -0.407899 -0.875374 -0.545799
3 -1.207392 -0.463464 1.292230
4 -0.688061 -0.494655 0.099824
使用 scipy.stats zscore 复制结果
In [12]: from scipy.stats import zscore
In [13]: df.apply(zscore) # (Credit: Manuel)
Out[13]:
randomA randomB randomC
0 0.798350 -0.106335 0.731041
1 1.505002 1.939828 -1.577295
2 -0.407899 -0.875374 -0.545799
3 -1.207392 -0.463464 1.292230
4 -0.688061 -0.494655 0.099824
【讨论】:
【参考方案7】:对于 Z 分数,我们可以坚持使用文档而不是使用“应用”功能
from scipy.stats import zscore
df_zscore = zscore(cols as array, axis=1)
【讨论】:
zscore 在哪个包中? 我刚刚修好了。它是 scipy 库【参考方案8】:要快速计算整列的 z 分数,请执行以下操作:
from scipy.stats import zscore
import pandas as pd
df = pd.DataFrame('num_1': [1,2,3,4,5,6,7,8,9,3,4,6,5,7,3,2,9])
df['num_1_zscore'] = zscore(df['num_1'])
display(df)
【讨论】:
以上是关于Pandas - 计算所有列的 z 分数的主要内容,如果未能解决你的问题,请参考以下文章
为啥在计算 z 分数时将样本标准差除以 sqrt(样本大小)
pandas生成新的累加数据列pandas生成新的累加数据列(数据列中包含NaN的情况)pandas计算整个dataframe的所有数据列的累加
python使用statsmodels包中的robust.mad函数以及pandas的apply函数计算dataframe中所有数据列的中位数绝对偏差(MAD)