如何按 id 对数据进行分组并使用 SQL 获取中值?
Posted
技术标签:
【中文标题】如何按 id 对数据进行分组并使用 SQL 获取中值?【英文标题】:How can I group data by id and get the median value using SQL? 【发布时间】:2021-09-15 13:41:26 【问题描述】:我有一张表格,上面有给定商店在几天内开业的时间,如下所示(OPENING_HOUR 设置为 24 小时时间格式,因此表格上的所有时间都是上午)。
>>> BUSINESS_HOURS
DATE | STORE_ID | OPENING_HOUR
________________________________________
0 2021-06-01 | 222 | 11
1 2021-06-02 | 222 | 11
2 2021-06-03 | 222 | 11
3 2021-06-04 | 222 | 11
4 2021-06-05 | 222 | 11
5 2021-06-06 | 222 | 11
6 2021-06-07 | 222 | 12
7 2021-06-08 | 222 | 11
8 2021-06-09 | 222 | 11
9 2021-06-10 | 222 | 12
现在我需要按 id 对数据进行分组,并确定哪个 opening_hour 最频繁。在下面的案例中,80% 的案例都在上午 11 点,所以我需要这样的东西:
>>> DATA_GROUPED
STORE_ID | OPENING_HOUR | FREQUENCY
________________________________________
0 222 | 11 | 0.8
这可能只使用 SQL 吗?谢谢你们的帮助,伙计们!
【问题讨论】:
【参考方案1】:你可以使用窗口函数:
select store_id, opening_hour, count(*) as cnt,
count(*) * 1.0 / sum(count(*)) over () as ratio
from t
where store_id = 1
group by store_id, opening_hour
order by cnt desc
limit 1;
如果您希望所有商店都使用此功能,可以使用窗口函数:
select t.* except (seqnum)
from (select store_id, opening_hour, count(*) as cnt,
count(*) * 1.0 / sum(count(*)) over () as ratio,
row_number() over (partition by store_id order by count(*) desc) as seqnum
from t
group by store_id, opening_hour
) t
where seqnum = 1;
【讨论】:
【参考方案2】:我找到了一种使用窗口函数和 CTE 的方法。
WITH Q1 AS (
SELECT
DISTINCT STORE_ID,
OPENING_HOUR,
COUNT(OPENING_HOUR) AMOUNT,
ROW_NUMBER() OVER(PARTITION BY STORE_IDORDER BY COUNT(OPENING_HOUR) DESC) as RANK
FROM T1
GROUP BY 1, 2
)
SELECT
STORE_ID,
OPENING_HOUR,
ROUND((AMOUNT/SUM(AMOUNT) OVER(PARTITION BY STORE_ID)),2) AS SHARE
FROM Q1-- WHERE RANK = 1
不是最短的答案,但效果很好!
【讨论】:
【参考方案3】:带开窗功能,这一种解决方案:
WITH business_hours as (
SELECT DATE("2021-06-01") as date, 222 as store_id, 11 as opening_hour
UNION ALL
SELECT "2021-06-02", 222, 11
UNION ALL
SELECT "2021-06-03", 222, 11
UNION ALL
SELECT "2021-06-04", 222, 11
UNION ALL
SELECT "2021-06-05", 222, 11
UNION ALL
SELECT "2021-06-06", 222, 11
UNION ALL
SELECT "2021-06-07", 222, 12
UNION ALL
SELECT "2021-06-08", 222, 11
UNION ALL
SELECT "2021-06-09", 222, 11
UNION ALL
SELECT "2021-06-10", 222, 12)
, agg as (SELECT DISTINCT store_id, opening_hour,
COUNT(store_id) OVER (partition by opening_hour, EXTRACT(MONTH FROM date)) as total_open_per_hour,
COUNT(store_id) OVER (partition by EXTRACT(MONTH FROM date)) as total_open,
from business_hours)
SELECT store_id, opening_hour, safe_divide(total_open_per_hour, total_open) frequency FROM agg
结果:
【讨论】:
【参考方案4】:考虑以下方法
select * from (
select distinct store_id, opening_hour,
count(1) over(partition by opening_hour) / count(1) over() frequency
from business_hours
)
where true
qualify row_number() over(partition by store_id order by frequency desc) = 1
为您提供每家商店最频繁的营业时间
如果应用于您问题中的样本数据 - 输出是
【讨论】:
以上是关于如何按 id 对数据进行分组并使用 SQL 获取中值?的主要内容,如果未能解决你的问题,请参考以下文章
SQL Query (SQL Server 2008) 从两个表中检索数据并对结果进行分组
SQL Oracle - 按 ID、任务 ID、最小和最大时间戳分组