ValueError:形状 (3,1) 的不可广播输出操作数与广播形状 (3,4) 不匹配

Posted

技术标签:

【中文标题】ValueError:形状 (3,1) 的不可广播输出操作数与广播形状 (3,4) 不匹配【英文标题】:ValueError: non-broadcastable output operand with shape (3,1) doesn't match the broadcast shape (3,4) 【发布时间】:2018-05-09 15:59:19 【问题描述】:

我最近开始在 YouTube 上关注 Siraj Raval 的深度学习教程,但是当我尝试运行我的代码时出现错误。代码来自他系列的第二集,如何制作神经网络。当我运行代码时,我得到了错误:

Traceback (most recent call last):
File "C:\Users\dpopp\Documents\Machine Learning\first_neural_net.py", line 66, in <module>
neural_network.train(training_set_inputs, training_set_outputs, 10000)
File "C:\Users\dpopp\Documents\Machine Learning\first_neural_net.py", line 44, in train
self.synaptic_weights += adjustment
ValueError: non-broadcastable output operand with shape (3,1) doesn't match the broadcast shape (3,4)

我多次检查他的代码并没有发现任何差异,甚至尝试从 GitHub 链接复制和粘贴他的代码。这是我现在的代码:

from numpy import exp, array, random, dot

class NeuralNetwork():
    def __init__(self):
        # Seed the random number generator, so it generates the same numbers
        # every time the program runs.
        random.seed(1)

        # We model a single neuron, with 3 input connections and 1 output connection.
        # We assign random weights to a 3 x 1 matrix, with values in the range -1 to 1
        # and mean 0.
        self.synaptic_weights = 2 * random.random((3, 1)) - 1

    # The Sigmoid function, which describes an S shaped curve.
    # We pass the weighted sum of the inputs through this function to
    # normalise them between 0 and 1.
    def __sigmoid(self, x):
        return 1 / (1 + exp(-x))

    # The derivative of the Sigmoid function.
    # This is the gradient of the Sigmoid curve.
    # It indicates how confident we are about the existing weight.
    def __sigmoid_derivative(self, x):
        return x * (1 - x)

    # We train the neural network through a process of trial and error.
    # Adjusting the synaptic weights each time.
    def train(self, training_set_inputs, training_set_outputs, number_of_training_iterations):
        for iteration in range(number_of_training_iterations):
            # Pass the training set through our neural network (a single neuron).
            output = self.think(training_set_inputs)

            # Calculate the error (The difference between the desired output
            # and the predicted output).
            error = training_set_outputs - output

            # Multiply the error by the input and again by the gradient of the Sigmoid curve.
            # This means less confident weights are adjusted more.
            # This means inputs, which are zero, do not cause changes to the weights.
            adjustment = dot(training_set_inputs.T, error * self.__sigmoid_derivative(output))

            # Adjust the weights.
            self.synaptic_weights += adjustment

    # The neural network thinks.
    def think(self, inputs):
        # Pass inputs through our neural network (our single neuron).
        return self.__sigmoid(dot(inputs, self.synaptic_weights))

if __name__ == '__main__':

    # Initialize a single neuron neural network
    neural_network = NeuralNetwork()

    print("Random starting synaptic weights:")
    print(neural_network.synaptic_weights)

    # The training set. We have 4 examples, each consisting of 3 input values
    # and 1 output value.
    training_set_inputs = array([[0, 0, 1], [1, 1, 1], [1, 0, 1], [0, 1, 1]])
    training_set_outputs = array([[0, 1, 1, 0]])

    # Train the neural network using a training set
    # Do it 10,000 times and make small adjustments each time
    neural_network.train(training_set_inputs, training_set_outputs, 10000)

    print("New Synaptic weights after training:")
    print(neural_network.synaptic_weights)

    # Test the neural net with a new situation
    print("Considering new situation [1, 0, 0] -> ?:")
    print(neural_network.think(array([[1, 0, 0]])))

即使复制并粘贴了与 Siraj 剧集相同的代码,我仍然遇到同样的错误。

我刚开始研究人工智能,不明白错误是什么意思。有人可以解释它的含义以及如何解决它吗?谢谢!

【问题讨论】:

Broadcasting 【参考方案1】:

self.synaptic_weights += adjustment 更改为

self.synaptic_weights = self.synaptic_weights + adjustment

self.synaptic_weights 的形状必须为 (3,1),adjustment 的形状必须为 (3,4)。虽然形状是 broadcastablenumpy 一定不喜欢尝试将形状为 (3,4) 的结果分配给形状为 (3,1) 的数组

a = np.ones((3,1))
b = np.random.randint(1,10, (3,4))

>>> a
array([[1],
       [1],
       [1]])
>>> b
array([[8, 2, 5, 7],
       [2, 5, 4, 8],
       [7, 7, 6, 6]])

>>> a + b
array([[9, 3, 6, 8],
       [3, 6, 5, 9],
       [8, 8, 7, 7]])

>>> b += a
>>> b
array([[9, 3, 6, 8],
       [3, 6, 5, 9],
       [8, 8, 7, 7]])
>>> a
array([[1],
       [1],
       [1]])

>>> a += b
Traceback (most recent call last):
  File "<pyshell#24>", line 1, in <module>
    a += b
ValueError: non-broadcastable output operand with shape (3,1) doesn't match the broadcast shape (3,4)

使用numpy.add 并指定a 作为输出数组时也会出现同样的错误

>>> np.add(a,b, out = a)
Traceback (most recent call last):
  File "<pyshell#31>", line 1, in <module>
    np.add(a,b, out = a)
ValueError: non-broadcastable output operand with shape (3,1) doesn't match the broadcast shape (3,4)
>>> 

需要创建一个新的a

>>> a = a + b
>>> a
array([[10,  4,  7,  9],
       [ 4,  7,  6, 10],
       [ 9,  9,  8,  8]])
>>> 

【讨论】:

【参考方案2】:

希望现在你已经执行了代码,但是他的代码和你的代码之间的问题是这一行:

training_output = np.array([[0,1,1,0]]).T  

虽然转置不要忘记添加 2 个方括号,但对于相同的代码,我遇到了同样的问题,这对我有用。 谢谢

【讨论】:

欢迎来到 Stack Overflow!请花一些时间在发布之前格式化您的答案,以确保每个人都能轻松阅读。例如,您可以使用 backsticks (`) 来格式化内联代码 这样做解决了ValueError OP 得到/正在得到的问题? ... OP 使用名称 training_set_outputs 而不是 training_outputs

以上是关于ValueError:形状 (3,1) 的不可广播输出操作数与广播形状 (3,4) 不匹配的主要内容,如果未能解决你的问题,请参考以下文章

ValueError: 操作数无法与形状 (5,) (30,) 一起广播

ValueError:在进行加权预测时,操作数无法与形状 (7,) (624,3) 一起广播

ValueError:无法将输入数组从形状(25,1)广播到形状(25)

Mask-RCNN,ValueError:无法将输入数组从形状(70)广播到形状(1)

SpaCy - ValueError:操作数无法与形状一起广播(1,2)(1,5)

ValueError:操作数无法与形状一起广播 (2501,201) (2501,)