如何从 scikit-learn 决策树中提取决策规则?
Posted
技术标签:
【中文标题】如何从 scikit-learn 决策树中提取决策规则?【英文标题】:How to extract the decision rules from scikit-learn decision-tree? 【发布时间】:2013-12-12 00:51:30 【问题描述】:我可以从决策树中经过训练的树中提取基础决策规则(或“决策路径”)作为文本列表吗?
类似:
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
【问题讨论】:
How do I find which attributes my tree splits on, when using scikit-learn?的可能重复 你有没有找到这个问题的答案?我必须以 SAS 数据步骤格式导出决策树规则,这几乎与您列出的完全相同。 您可以使用包sklearn-porter 将决策树(也包括随机森林和提升树)导出并转换为C、Java、javascript 等。 您可以查看此链接-kdnuggets.com/2017/05/… 我在article 中总结了 3 种从决策树中提取规则的方法。一种方法是基于“paulkernfeld”代码并产生一种对人类友好的文本规则格式。 【参考方案1】:我相信这个答案比这里的其他答案更正确:
from sklearn.tree import _tree
def tree_to_code(tree, feature_names):
tree_ = tree.tree_
feature_name = [
feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature
]
print "def tree():".format(", ".join(feature_names))
def recurse(node, depth):
indent = " " * depth
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
print "if <= :".format(indent, name, threshold)
recurse(tree_.children_left[node], depth + 1)
print "else: # if > ".format(indent, name, threshold)
recurse(tree_.children_right[node], depth + 1)
else:
print "return ".format(indent, tree_.value[node])
recurse(0, 1)
这会打印出一个有效的 Python 函数。下面是一个尝试返回其输入(0 到 10 之间的数字)的树的示例输出。
def tree(f0):
if f0 <= 6.0:
if f0 <= 1.5:
return [[ 0.]]
else: # if f0 > 1.5
if f0 <= 4.5:
if f0 <= 3.5:
return [[ 3.]]
else: # if f0 > 3.5
return [[ 4.]]
else: # if f0 > 4.5
return [[ 5.]]
else: # if f0 > 6.0
if f0 <= 8.5:
if f0 <= 7.5:
return [[ 7.]]
else: # if f0 > 7.5
return [[ 8.]]
else: # if f0 > 8.5
return [[ 9.]]
以下是我在其他答案中看到的一些绊脚石:
-
使用
tree_.threshold == -2
来确定一个节点是否是叶子不是一个好主意。如果它是一个阈值为 -2 的真实决策节点怎么办?相反,您应该查看tree.feature
或tree.children_*
。
features = [feature_names[i] for i in tree_.feature]
行在我的 sklearn 版本中崩溃,因为 tree.tree_.feature
的某些值是 -2(特别是叶节点)。
递归函数中不需要多个 if 语句,一个就可以了。
【讨论】:
这段代码非常适合我。但是,我有 500 多个 feature_names,所以输出代码对于人类来说几乎是不可能理解的。有没有办法让我只将我感兴趣的功能名称输入到函数中? 我同意前面的评论。 IIUC,print "return ".format(indent, tree_.value[node])
应更改为 print "return ".format(indent, np.argmax(tree_.value[node][0]))
以使函数返回类索引。
@paulkernfeld 啊,是的,我看到你可以遍历RandomForestClassifier.estimators_
,但我无法弄清楚如何组合估计器的结果。
我无法在 python 3 中使用它,_tree 位似乎无法正常工作,并且未定义 TREE_UNDEFINED。 This link helped me. 虽然导出的代码不能直接在 python 中运行,但它类似于 c 并且很容易翻译成其他语言:web.archive.org/web/20171005203850/http://www.kdnuggets.com/…
@Josiah,将 () 添加到 print 语句以使其在 python3 中工作。例如print "bla"
=> print("bla")
【参考方案2】:
我创建了自己的函数来从 sklearn 创建的决策树中提取规则:
import pandas as pd
import numpy as np
from sklearn.tree import DecisionTreeClassifier
# dummy data:
df = pd.DataFrame('col1':[0,1,2,3],'col2':[3,4,5,6],'dv':[0,1,0,1])
# create decision tree
dt = DecisionTreeClassifier(max_depth=5, min_samples_leaf=1)
dt.fit(df.ix[:,:2], df.dv)
此函数首先从节点(子数组中的 -1 标识)开始,然后递归查找父节点。我称之为节点的“血统”。在此过程中,我获取了创建 if/then/else SAS 逻辑所需的值:
def get_lineage(tree, feature_names):
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
features = [feature_names[i] for i in tree.tree_.feature]
# get ids of child nodes
idx = np.argwhere(left == -1)[:,0]
def recurse(left, right, child, lineage=None):
if lineage is None:
lineage = [child]
if child in left:
parent = np.where(left == child)[0].item()
split = 'l'
else:
parent = np.where(right == child)[0].item()
split = 'r'
lineage.append((parent, split, threshold[parent], features[parent]))
if parent == 0:
lineage.reverse()
return lineage
else:
return recurse(left, right, parent, lineage)
for child in idx:
for node in recurse(left, right, child):
print node
下面的元组集包含创建 SAS if/then/else 语句所需的一切。我不喜欢在 SAS 中使用 do
块,这就是我创建描述节点整个路径的逻辑的原因。元组后面的单个整数是路径中终端节点的 ID。所有前面的元组组合起来创建该节点。
In [1]: get_lineage(dt, df.columns)
(0, 'l', 0.5, 'col1')
1
(0, 'r', 0.5, 'col1')
(2, 'l', 4.5, 'col2')
3
(0, 'r', 0.5, 'col1')
(2, 'r', 4.5, 'col2')
(4, 'l', 2.5, 'col1')
5
(0, 'r', 0.5, 'col1')
(2, 'r', 4.5, 'col2')
(4, 'r', 2.5, 'col1')
6
【讨论】:
这种类型的树是否正确,因为 col1 再次出现,一个是 col1 右分支将有(0.5, 2.5]
之间的记录。这些树是用递归分区制成的。没有什么可以阻止变量被多次选择。
好的,你能解释一下递归部分发生了什么,因为我在我的代码中使用了它并且看到了类似的结果
如何修改此代码以获取类似结构的数据框中的类和规则?【参考方案3】:
我修改了Zelazny7提交的代码,打印了一些伪代码:
def get_code(tree, feature_names):
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
features = [feature_names[i] for i in tree.tree_.feature]
value = tree.tree_.value
def recurse(left, right, threshold, features, node):
if (threshold[node] != -2):
print "if ( " + features[node] + " <= " + str(threshold[node]) + " ) "
if left[node] != -1:
recurse (left, right, threshold, features,left[node])
print " else "
if right[node] != -1:
recurse (left, right, threshold, features,right[node])
print ""
else:
print "return " + str(value[node])
recurse(left, right, threshold, features, 0)
如果您在同一个示例中调用get_code(dt, df.columns)
,您将获得:
if ( col1 <= 0.5 )
return [[ 1. 0.]]
else
if ( col2 <= 4.5 )
return [[ 0. 1.]]
else
if ( col1 <= 2.5 )
return [[ 1. 0.]]
else
return [[ 0. 1.]]
【讨论】:
你能告诉我,在上面的输出中,return 语句中的 [[ 1. 0.]] 到底是什么意思。我不是 Python 人,但在做同样的事情。所以如果你能证明一些细节对我有好处,这样对我来说会更容易。 @user3156186 表示'0'类有1个对象,'1'类有0个对象 @Daniele,你知道这些课程是如何排序的吗?我猜是字母数字,但我没有在任何地方找到确认。 谢谢!对于阈值实际上为-2的边缘情况,我们可能需要将(threshold[node] != -2)
更改为( left[node] != -1)
(类似于下面获取子节点id的方法)
@Daniele,知道如何让你的函数“get_code”“返回”一个值而不是“打印”它,因为我需要将它发送到另一个函数?【参考方案4】:
Scikit learn 在 0.21 版(2019 年 5 月)中引入了一种名为 export_text
的美味新方法,用于从树中提取规则。 Documentation here。不再需要创建自定义函数。
拟合模型后,您只需要两行代码。一、导入export_text
:
from sklearn.tree import export_text
其次,创建一个包含您的规则的对象。为了使规则看起来更具可读性,请使用 feature_names
参数并传递您的功能名称列表。例如,如果您的模型名为 model
,并且您的特征在名为 X_train
的数据框中命名,您可以创建一个名为 tree_rules
的对象:
tree_rules = export_text(model, feature_names=list(X_train.columns))
然后打印或保存tree_rules
。您的输出将如下所示:
|--- Age <= 0.63
| |--- EstimatedSalary <= 0.61
| | |--- Age <= -0.16
| | | |--- class: 0
| | |--- Age > -0.16
| | | |--- EstimatedSalary <= -0.06
| | | | |--- class: 0
| | | |--- EstimatedSalary > -0.06
| | | | |--- EstimatedSalary <= 0.40
| | | | | |--- EstimatedSalary <= 0.03
| | | | | | |--- class: 1
【讨论】:
【参考方案5】:0.18.0 版本中有一个新的DecisionTreeClassifier
方法decision_path
。开发人员提供了一个广泛的(有据可查的)walkthrough。
演练中打印树结构的第一部分代码似乎没问题。但是,我修改了第二部分中的代码以询问一个样本。我用# <--
表示的更改
编辑在拉取请求#8653 和#10951 中指出错误后,下面代码中# <--
标记的更改已在演练链接中更新。现在更容易跟随。
sample_id = 0
node_index = node_indicator.indices[node_indicator.indptr[sample_id]:
node_indicator.indptr[sample_id + 1]]
print('Rules used to predict sample %s: ' % sample_id)
for node_id in node_index:
if leave_id[sample_id] == node_id: # <-- changed != to ==
#continue # <-- comment out
print("leaf node reached, no decision here".format(leave_id[sample_id])) # <--
else: # < -- added else to iterate through decision nodes
if (X_test[sample_id, feature[node_id]] <= threshold[node_id]):
threshold_sign = "<="
else:
threshold_sign = ">"
print("decision id node %s : (X[%s, %s] (= %s) %s %s)"
% (node_id,
sample_id,
feature[node_id],
X_test[sample_id, feature[node_id]], # <-- changed i to sample_id
threshold_sign,
threshold[node_id]))
Rules used to predict sample 0:
decision id node 0 : (X[0, 3] (= 2.4) > 0.800000011921)
decision id node 2 : (X[0, 2] (= 5.1) > 4.94999980927)
leaf node 4 reached, no decision here
更改sample_id
以查看其他样本的决策路径。我没有向开发人员询问这些更改,只是在完成示例时看起来更直观。
【讨论】:
你我的朋友是个传奇!任何想法如何绘制该特定样本的决策树?非常感谢您的帮助 感谢 Victor,最好将此作为一个单独的问题提出,因为绘图要求可能特定于用户的需求。如果您提供有关您希望输出的外观的想法,您可能会得到很好的响应。 嘿,凯文,我创建了问题***.com/questions/48888893/… 请您看一下:***.com/questions/52654280/… 您能否解释一下名为 node_index 的部分,没有得到那个部分。它有什么作用?【参考方案6】:from StringIO import StringIO
out = StringIO()
out = tree.export_graphviz(clf, out_file=out)
print out.getvalue()
你可以看到一个有向图树。然后,clf.tree_.feature
和clf.tree_.value
分别是节点分裂特征数组和节点值数组。你可以参考这个github source的更多细节。
【讨论】:
是的,我知道如何绘制树 - 但我需要更多文本版本 - 规则。类似:orange.biolab.si/docs/latest/reference/rst/…【参考方案7】:只是因为每个人都非常乐于助人,所以我将对 Zelazny7 和 Daniele 的精美解决方案进行修改。这个是针对 python 2.7 的,带有标签以使其更具可读性:
def get_code(tree, feature_names, tabdepth=0):
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
features = [feature_names[i] for i in tree.tree_.feature]
value = tree.tree_.value
def recurse(left, right, threshold, features, node, tabdepth=0):
if (threshold[node] != -2):
print '\t' * tabdepth,
print "if ( " + features[node] + " <= " + str(threshold[node]) + " ) "
if left[node] != -1:
recurse (left, right, threshold, features,left[node], tabdepth+1)
print '\t' * tabdepth,
print " else "
if right[node] != -1:
recurse (left, right, threshold, features,right[node], tabdepth+1)
print '\t' * tabdepth,
print ""
else:
print '\t' * tabdepth,
print "return " + str(value[node])
recurse(left, right, threshold, features, 0)
【讨论】:
【参考方案8】:我一直在经历这个,但我需要以这种格式编写规则
if A>0.4 then if B<0.2 then if C>0.8 then class='X'
所以我改编了@paulkernfeld 的答案(谢谢),您可以根据自己的需要进行定制
def tree_to_code(tree, feature_names, Y):
tree_ = tree.tree_
feature_name = [
feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature
]
pathto=dict()
global k
k = 0
def recurse(node, depth, parent):
global k
indent = " " * depth
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
s= " <= ".format( name, threshold, node )
if node == 0:
pathto[node]=s
else:
pathto[node]=pathto[parent]+' & ' +s
recurse(tree_.children_left[node], depth + 1, node)
s=" > ".format( name, threshold)
if node == 0:
pathto[node]=s
else:
pathto[node]=pathto[parent]+' & ' +s
recurse(tree_.children_right[node], depth + 1, node)
else:
k=k+1
print(k,')',pathto[parent], tree_.value[node])
recurse(0, 1, 0)
【讨论】:
【参考方案9】:这是你需要的代码
我已将最喜欢的代码修改为在 jupyter notebook python 3 中正确缩进
import numpy as np
from sklearn.tree import _tree
def tree_to_code(tree, feature_names):
tree_ = tree.tree_
feature_name = [feature_names[i]
if i != _tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature]
print("def tree():".format(", ".join(feature_names)))
def recurse(node, depth):
indent = " " * depth
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
print("if <= :".format(indent, name, threshold))
recurse(tree_.children_left[node], depth + 1)
print("else: # if > ".format(indent, name, threshold))
recurse(tree_.children_right[node], depth + 1)
else:
print("return ".format(indent, np.argmax(tree_.value[node])))
recurse(0, 1)
【讨论】:
【参考方案10】:下面的代码是我在 anaconda python 2.7 下加上一个包名“pydot-ng”来制作带有决策规则的 PDF 文件的方法。希望对您有所帮助。
from sklearn import tree
clf = tree.DecisionTreeClassifier(max_leaf_nodes=n)
clf_ = clf.fit(X, data_y)
feature_names = X.columns
class_name = clf_.classes_.astype(int).astype(str)
def output_pdf(clf_, name):
from sklearn import tree
from sklearn.externals.six import StringIO
import pydot_ng as pydot
dot_data = StringIO()
tree.export_graphviz(clf_, out_file=dot_data,
feature_names=feature_names,
class_names=class_name,
filled=True, rounded=True,
special_characters=True,
node_ids=1,)
graph = pydot.graph_from_dot_data(dot_data.getvalue())
graph.write_pdf("%s.pdf"%name)
output_pdf(clf_, name='filename%s'%n)
a tree graphy show here
【讨论】:
【参考方案11】:这是一种使用 SKompiler 库将整个树转换为单个(不一定是人类可读的)python 表达式的方法:
from skompiler import skompile
skompile(dtree.predict).to('python/code')
【讨论】:
【参考方案12】:这建立在@paulkernfeld 的回答之上。如果您有一个带有您的特征的数据框 X 和一个带有您的共振的目标数据框 y 并且您想知道哪个 y 值在哪个节点中结束(以及相应地绘制它的蚂蚁),您可以执行以下操作:
def tree_to_code(tree, feature_names):
from sklearn.tree import _tree
codelines = []
codelines.append('def get_cat(X_tmp):\n')
codelines.append(' catout = []\n')
codelines.append(' for codelines in range(0,X_tmp.shape[0]):\n')
codelines.append(' Xin = X_tmp.iloc[codelines]\n')
tree_ = tree.tree_
feature_name = [
feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature
]
#print "def tree():".format(", ".join(feature_names))
def recurse(node, depth):
indent = " " * depth
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
codelines.append ('if Xin[""] <= :\n'.format(indent, name, threshold))
recurse(tree_.children_left[node], depth + 1)
codelines.append( 'else: # if Xin[""] > \n'.format(indent, name, threshold))
recurse(tree_.children_right[node], depth + 1)
else:
codelines.append( 'mycat = \n'.format(indent, node))
recurse(0, 1)
codelines.append(' catout.append(mycat)\n')
codelines.append(' return pd.DataFrame(catout,index=X_tmp.index,columns=["category"])\n')
codelines.append('node_ids = get_cat(X)\n')
return codelines
mycode = tree_to_code(clf,X.columns.values)
# now execute the function and obtain the dataframe with all nodes
exec(''.join(mycode))
node_ids = [int(x[0]) for x in node_ids.values]
node_ids2 = pd.DataFrame(node_ids)
print('make plot')
import matplotlib.cm as cm
colors = cm.rainbow(np.linspace(0, 1, 1+max( list(set(node_ids)))))
#plt.figure(figsize=cm2inch(24, 21))
for i in list(set(node_ids)):
plt.plot(y[node_ids2.values==i],'o',color=colors[i], label=str(i))
mytitle = ['y colored by node']
plt.title(mytitle ,fontsize=14)
plt.xlabel('my xlabel')
plt.ylabel(tagname)
plt.xticks(rotation=70)
plt.legend(loc='upper center', bbox_to_anchor=(0.5, 1.00), shadow=True, ncol=9)
plt.tight_layout()
plt.show()
plt.close
不是最优雅的版本,但它可以完成工作......
【讨论】:
当您想要返回代码行而不是仅仅打印它们时,这是一个很好的方法。【参考方案13】:现在您可以使用 export_text。
from sklearn.tree import export_text
r = export_text(loan_tree, feature_names=(list(X_train.columns)))
print(r)
来自 [sklearn][1] 的完整示例
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_text
iris = load_iris()
X = iris['data']
y = iris['target']
decision_tree = DecisionTreeClassifier(random_state=0, max_depth=2)
decision_tree = decision_tree.fit(X, y)
r = export_text(decision_tree, feature_names=iris['feature_names'])
print(r)
【讨论】:
【参考方案14】:这是一个函数,在 python 3 下打印 scikit-learn 决策树的规则,并带有条件块的偏移量以使结构更具可读性:
def print_decision_tree(tree, feature_names=None, offset_unit=' '):
'''Plots textual representation of rules of a decision tree
tree: scikit-learn representation of tree
feature_names: list of feature names. They are set to f1,f2,f3,... if not specified
offset_unit: a string of offset of the conditional block'''
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
value = tree.tree_.value
if feature_names is None:
features = ['f%d'%i for i in tree.tree_.feature]
else:
features = [feature_names[i] for i in tree.tree_.feature]
def recurse(left, right, threshold, features, node, depth=0):
offset = offset_unit*depth
if (threshold[node] != -2):
print(offset+"if ( " + features[node] + " <= " + str(threshold[node]) + " ) ")
if left[node] != -1:
recurse (left, right, threshold, features,left[node],depth+1)
print(offset+" else ")
if right[node] != -1:
recurse (left, right, threshold, features,right[node],depth+1)
print(offset+"")
else:
print(offset+"return " + str(value[node]))
recurse(left, right, threshold, features, 0,0)
【讨论】:
【参考方案15】:您还可以通过区分它属于哪个类,甚至通过提及它的输出值来使其更具信息性。
def print_decision_tree(tree, feature_names, offset_unit=' '):
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
value = tree.tree_.value
if feature_names is None:
features = ['f%d'%i for i in tree.tree_.feature]
else:
features = [feature_names[i] for i in tree.tree_.feature]
def recurse(left, right, threshold, features, node, depth=0):
offset = offset_unit*depth
if (threshold[node] != -2):
print(offset+"if ( " + features[node] + " <= " + str(threshold[node]) + " ) ")
if left[node] != -1:
recurse (left, right, threshold, features,left[node],depth+1)
print(offset+" else ")
if right[node] != -1:
recurse (left, right, threshold, features,right[node],depth+1)
print(offset+"")
else:
#print(offset,value[node])
#To remove values from node
temp=str(value[node])
mid=len(temp)//2
tempx=[]
tempy=[]
cnt=0
for i in temp:
if cnt<=mid:
tempx.append(i)
cnt+=1
else:
tempy.append(i)
cnt+=1
val_yes=[]
val_no=[]
res=[]
for j in tempx:
if j=="[" or j=="]" or j=="." or j==" ":
res.append(j)
else:
val_no.append(j)
for j in tempy:
if j=="[" or j=="]" or j=="." or j==" ":
res.append(j)
else:
val_yes.append(j)
val_yes = int("".join(map(str, val_yes)))
val_no = int("".join(map(str, val_no)))
if val_yes>val_no:
print(offset,'\033[1m',"YES")
print('\033[0m')
elif val_no>val_yes:
print(offset,'\033[1m',"NO")
print('\033[0m')
else:
print(offset,'\033[1m',"Tie")
print('\033[0m')
recurse(left, right, threshold, features, 0,0)
【讨论】:
【参考方案16】:这是我提取决策规则的方法,可以直接在sql中使用,因此可以按节点对数据进行分组。 (基于之前海报的方法。)
结果将是后续的 CASE
子句,可以复制到 sql 语句中,例如。
SELECT COALESCE(*CASE WHEN <conditions> THEN > <NodeA>*, > *CASE WHEN
<conditions> THEN <NodeB>*, > ....)NodeName,* > FROM <table or view>
import numpy as np
import pickle
feature_names=.............
features = [feature_names[i] for i in range(len(feature_names))]
clf= pickle.loads(trained_model)
impurity=clf.tree_.impurity
importances = clf.feature_importances_
SqlOut=""
#global Conts
global ContsNode
global Path
#Conts=[]#
ContsNode=[]
Path=[]
global Results
Results=[]
def print_decision_tree(tree, feature_names, offset_unit='' ''):
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
value = tree.tree_.value
if feature_names is None:
features = [''f%d''%i for i in tree.tree_.feature]
else:
features = [feature_names[i] for i in tree.tree_.feature]
def recurse(left, right, threshold, features, node, depth=0,ParentNode=0,IsElse=0):
global Conts
global ContsNode
global Path
global Results
global LeftParents
LeftParents=[]
global RightParents
RightParents=[]
for i in range(len(left)): # This is just to tell you how to create a list.
LeftParents.append(-1)
RightParents.append(-1)
ContsNode.append("")
Path.append("")
for i in range(len(left)): # i is node
if (left[i]==-1 and right[i]==-1):
if LeftParents[i]>=0:
if Path[LeftParents[i]]>" ":
Path[i]=Path[LeftParents[i]]+" AND " +ContsNode[LeftParents[i]]
else:
Path[i]=ContsNode[LeftParents[i]]
if RightParents[i]>=0:
if Path[RightParents[i]]>" ":
Path[i]=Path[RightParents[i]]+" AND not " +ContsNode[RightParents[i]]
else:
Path[i]=" not " +ContsNode[RightParents[i]]
Results.append(" case when " +Path[i]+" then ''" +":4d".format(i)+ " "+":2.2f".format(impurity[i])+" "+Path[i][0:180]+"''")
else:
if LeftParents[i]>=0:
if Path[LeftParents[i]]>" ":
Path[i]=Path[LeftParents[i]]+" AND " +ContsNode[LeftParents[i]]
else:
Path[i]=ContsNode[LeftParents[i]]
if RightParents[i]>=0:
if Path[RightParents[i]]>" ":
Path[i]=Path[RightParents[i]]+" AND not " +ContsNode[RightParents[i]]
else:
Path[i]=" not "+ContsNode[RightParents[i]]
if (left[i]!=-1):
LeftParents[left[i]]=i
if (right[i]!=-1):
RightParents[right[i]]=i
ContsNode[i]= "( "+ features[i] + " <= " + str(threshold[i]) + " ) "
recurse(left, right, threshold, features, 0,0,0,0)
print_decision_tree(clf,features)
SqlOut=""
for i in range(len(Results)):
SqlOut=SqlOut+Results[i]+ " end,"+chr(13)+chr(10)
【讨论】:
【参考方案17】:修改了 Zelazny7 的代码以从决策树中获取 SQL。
# SQL from decision tree
def get_lineage(tree, feature_names):
left = tree.tree_.children_left
right = tree.tree_.children_right
threshold = tree.tree_.threshold
features = [feature_names[i] for i in tree.tree_.feature]
le='<='
g ='>'
# get ids of child nodes
idx = np.argwhere(left == -1)[:,0]
def recurse(left, right, child, lineage=None):
if lineage is None:
lineage = [child]
if child in left:
parent = np.where(left == child)[0].item()
split = 'l'
else:
parent = np.where(right == child)[0].item()
split = 'r'
lineage.append((parent, split, threshold[parent], features[parent]))
if parent == 0:
lineage.reverse()
return lineage
else:
return recurse(left, right, parent, lineage)
print 'case '
for j,child in enumerate(idx):
clause=' when '
for node in recurse(left, right, child):
if len(str(node))<3:
continue
i=node
if i[1]=='l': sign=le
else: sign=g
clause=clause+i[3]+sign+str(i[2])+' and '
clause=clause[:-4]+' then '+str(j)
print clause
print 'else 99 end as clusters'
【讨论】:
【参考方案18】:我需要决策树中更人性化的规则格式。我正在构建开源 AutoML Python 包,很多时候 MLJAR 用户希望从树中查看确切的规则。
这就是我基于paulkernfeld
答案实现一个函数的原因。
def get_rules(tree, feature_names, class_names):
tree_ = tree.tree_
feature_name = [
feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
for i in tree_.feature
]
paths = []
path = []
def recurse(node, path, paths):
if tree_.feature[node] != _tree.TREE_UNDEFINED:
name = feature_name[node]
threshold = tree_.threshold[node]
p1, p2 = list(path), list(path)
p1 += [f"(name <= np.round(threshold, 3))"]
recurse(tree_.children_left[node], p1, paths)
p2 += [f"(name > np.round(threshold, 3))"]
recurse(tree_.children_right[node], p2, paths)
else:
path += [(tree_.value[node], tree_.n_node_samples[node])]
paths += [path]
recurse(0, path, paths)
# sort by samples count
samples_count = [p[-1][1] for p in paths]
ii = list(np.argsort(samples_count))
paths = [paths[i] for i in reversed(ii)]
rules = []
for path in paths:
rule = "if "
for p in path[:-1]:
if rule != "if ":
rule += " and "
rule += str(p)
rule += " then "
if class_names is None:
rule += "response: "+str(np.round(path[-1][0][0][0],3))
else:
classes = path[-1][0][0]
l = np.argmax(classes)
rule += f"class: class_names[l] (proba: np.round(100.0*classes[l]/np.sum(classes),2)%)"
rule += f" | based on path[-1][1]:, samples"
rules += [rule]
return rules
规则按分配给每个规则的训练样本数排序。对于每个规则,都有关于分类任务的预测类名称和预测概率的信息。对于回归任务,仅打印有关预测值的信息。
示例
from sklearn import datasets
from sklearn.tree import DecisionTreeRegressor
from sklearn import tree
# Prepare the data data
boston = datasets.load_boston()
X = boston.data
y = boston.target
# Fit the regressor, set max_depth = 3
regr = DecisionTreeRegressor(max_depth=3, random_state=1234)
model = regr.fit(X, y)
# Print rules
rules = get_rules(regr, boston.feature_names, None)
for r in rules:
print(r)
打印规则:
if (RM <= 6.941) and (LSTAT <= 14.4) and (DIS > 1.385) then response: 22.905 | based on 250 samples
if (RM <= 6.941) and (LSTAT > 14.4) and (CRIM <= 6.992) then response: 17.138 | based on 101 samples
if (RM <= 6.941) and (LSTAT > 14.4) and (CRIM > 6.992) then response: 11.978 | based on 74 samples
if (RM > 6.941) and (RM <= 7.437) and (NOX <= 0.659) then response: 33.349 | based on 43 samples
if (RM > 6.941) and (RM > 7.437) and (PTRATIO <= 19.65) then response: 45.897 | based on 29 samples
if (RM <= 6.941) and (LSTAT <= 14.4) and (DIS <= 1.385) then response: 45.58 | based on 5 samples
if (RM > 6.941) and (RM <= 7.437) and (NOX > 0.659) then response: 14.4 | based on 3 samples
if (RM > 6.941) and (RM > 7.437) and (PTRATIO > 19.65) then response: 21.9 | based on 1 samples
我在文章中总结了从决策树中提取规则的方法:Extract Rules from Decision Tree in 3 Ways with Scikit-Learn and Python。
【讨论】:
记得导入:from sklearn.tree import _tree
和“import numpy as np”
@pplonski ...我无法使您的代码适用于 xgboost 而不是 DecisionTreeRegressor。如果您能提供帮助,我将不胜感激,我是一个开始学习 Python 的 MATLAB 人。
@bhamadicharef 它不适用于 xgboost。 xgboost 是树的集合。首先,您需要从 xgboost 中提取选定的树。您需要将其存储为 sklearn-tree 格式,然后您可以使用上面的代码。
@pplonski 我明白你的意思,但对 sklearn-tree 格式还不是很熟悉。如果我有有用的东西,我会分享。我将简单和小的规则解析为 matlab 代码,但我的模型有 3000 棵深度为 6 的树,所以像你这样的健壮且特别递归的方法非常有用。学习...【参考方案19】:
显然很久以前有人已经决定尝试在官方scikit的树导出函数中添加以下函数(基本上只支持export_graphviz)
def export_dict(tree, feature_names=None, max_depth=None) :
"""Export a decision tree in dict format.
这是他的完整提交:
https://github.com/scikit-learn/scikit-learn/blob/79bdc8f711d0af225ed6be9fdb708cea9f98a910/sklearn/tree/export.py
不完全确定这条评论发生了什么。但您也可以尝试使用该功能。
我认为这需要向 scikit-learn 的优秀人员提出严肃的文档请求,以正确记录 sklearn.tree.Tree
API,这是 DecisionTreeClassifier
公开为其属性 tree_
的底层树结构。
【讨论】:
【参考方案20】:只需像这样使用 sklearn.tree 中的函数
from sklearn.tree import export_graphviz
export_graphviz(tree,
out_file = "tree.dot",
feature_names = tree.columns) //or just ["petal length", "petal width"]
然后在您的项目文件夹中查找文件 tree.dot,复制所有内容并将其粘贴到此处http://www.webgraphviz.com/ 并生成您的图表 :)
【讨论】:
【参考方案21】:感谢@paulkerfeld 的精彩解决方案。在他的解决方案之上,对于所有想要序列化版本树的人,只需使用tree.threshold
、tree.children_left
、tree.children_right
、tree.feature
和tree.value
。由于叶子没有分裂,因此没有特征名称和子元素,它们在tree.feature
和tree.children_***
中的占位符是_tree.TREE_UNDEFINED
和_tree.TREE_LEAF
。 depth first search
为每个拆分分配一个唯一索引。
注意tree.value
的形状是[n, 1, 1]
【讨论】:
【参考方案22】:这是一个函数,它通过转换export_text
的输出从决策树生成 Python 代码:
import string
from sklearn.tree import export_text
def export_py_code(tree, feature_names, max_depth=100, spacing=4):
if spacing < 2:
raise ValueError('spacing must be > 1')
# Clean up feature names (for correctness)
nums = string.digits
alnums = string.ascii_letters + nums
clean = lambda s: ''.join(c if c in alnums else '_' for c in s)
features = [clean(x) for x in feature_names]
features = ['_'+x if x[0] in nums else x for x in features if x]
if len(set(features)) != len(feature_names):
raise ValueError('invalid feature names')
# First: export tree to text
res = export_text(tree, feature_names=features,
max_depth=max_depth,
decimals=6,
spacing=spacing-1)
# Second: generate Python code from the text
skip, dash = ' '*spacing, '-'*(spacing-1)
code = 'def decision_tree():\n'.format(', '.join(features))
for line in repr(tree).split('\n'):
code += skip + "# " + line + '\n'
for line in res.split('\n'):
line = line.rstrip().replace('|',' ')
if '<' in line or '>' in line:
line, val = line.rsplit(maxsplit=1)
line = line.replace(' ' + dash, 'if')
line = ' :g:'.format(line, float(val))
else:
line = line.replace(' class:'.format(dash), 'return')
code += skip + line + '\n'
return code
示例用法:
res = export_py_code(tree, feature_names=names, spacing=4)
print (res)
样本输出:
def decision_tree(f1, f2, f3):
# DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=3,
# max_features=None, max_leaf_nodes=None,
# min_impurity_decrease=0.0, min_impurity_split=None,
# min_samples_leaf=1, min_samples_split=2,
# min_weight_fraction_leaf=0.0, presort=False,
# random_state=42, splitter='best')
if f1 <= 12.5:
if f2 <= 17.5:
if f1 <= 10.5:
return 2
if f1 > 10.5:
return 3
if f2 > 17.5:
if f2 <= 22.5:
return 1
if f2 > 22.5:
return 1
if f1 > 12.5:
if f1 <= 17.5:
if f3 <= 23.5:
return 2
if f3 > 23.5:
return 3
if f1 > 17.5:
if f1 <= 25:
return 1
if f1 > 25:
return 2
上面的例子是用names = ['f'+str(j+1) for j in range(NUM_FEATURES)]
生成的。
一个方便的功能是它可以生成更小的文件大小和更小的间距。只需设置spacing=2
。
【讨论】:
【参考方案23】:从这个答案中,您可以获得一个可读且高效的表示:https://***.com/a/65939892/3746632
输出如下所示。 X 是表示单个实例特征的一维向量。
from numba import jit,njit
@njit
def predict(X):
ret = 0
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
ret += 1
else: # if w_pizza > 0.5
pass
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
pass
else: # if w_pizza > 0.5
ret += 1
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
ret += 1
else: # if w_mexico > 0.5
ret += 1
else: # if w_pizza > 0.5
pass
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
ret += 1
else: # if w_mexico > 0.5
pass
else: # if w_pizza > 0.5
ret += 1
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
pass
else: # if w_pizza > 0.5
pass
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
ret += 1
else: # if w_pizza > 0.5
ret += 1
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
pass
else: # if w_pizza > 0.5
ret += 1
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
pass
else: # if w_pizza > 0.5
pass
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
pass
else: # if w_pizza > 0.5
pass
if X[0] <= 0.5: # if w_pizza <= 0.5
if X[1] <= 0.5: # if w_mexico <= 0.5
if X[2] <= 0.5: # if w_reusable <= 0.5
ret += 1
else: # if w_reusable > 0.5
pass
else: # if w_mexico > 0.5
pass
else: # if w_pizza > 0.5
pass
return ret/10
【讨论】:
以上是关于如何从 scikit-learn 决策树中提取决策规则?的主要内容,如果未能解决你的问题,请参考以下文章