使用 NLTK 创建新语料库
Posted
技术标签:
【中文标题】使用 NLTK 创建新语料库【英文标题】:Creating a new corpus with NLTK 【发布时间】:2011-06-24 12:25:38 【问题描述】:我认为我的标题的答案通常是去阅读文档,但我浏览了NLTK book,但它没有给出答案。我对 Python 有点陌生。
我有一堆.txt
文件,我希望能够使用NLTK 为语料库nltk_data
提供的语料库功能。
我已经尝试过PlaintextCorpusReader
,但我无法做到:
>>>import nltk
>>>from nltk.corpus import PlaintextCorpusReader
>>>corpus_root = './'
>>>newcorpus = PlaintextCorpusReader(corpus_root, '.*')
>>>newcorpus.words()
如何使用 punkt 分割 newcorpus
句子?我尝试使用 punkt 函数,但 punkt 函数无法读取 PlaintextCorpusReader
类?
您能否指导我如何将分段数据写入文本文件?
【问题讨论】:
【参考方案1】:经过几年的摸索,这里是
的更新教程如何创建带有文本文件目录的 NLTK 语料库?
主要思想是利用nltk.corpus.reader 包。如果您有一个English 文本文件目录,最好使用PlaintextCorpusReader。
如果您的目录如下所示:
newcorpus/
file1.txt
file2.txt
...
只需使用这几行代码,就可以得到一个语料库:
import os
from nltk.corpus.reader.plaintext import PlaintextCorpusReader
corpusdir = 'newcorpus/' # Directory of corpus.
newcorpus = PlaintextCorpusReader(corpusdir, '.*')
注意: PlaintextCorpusReader
将使用默认的 nltk.tokenize.sent_tokenize()
和 nltk.tokenize.word_tokenize()
将您的文本分成句子和单词,这些功能是为英语构建的,它可能 NOT 适用于所有语言。
这是创建测试文本文件以及如何使用 NLTK 创建语料库以及如何在不同级别访问语料库的完整代码:
import os
from nltk.corpus.reader.plaintext import PlaintextCorpusReader
# Let's create a corpus with 2 texts in different textfile.
txt1 = """This is a foo bar sentence.\nAnd this is the first txtfile in the corpus."""
txt2 = """Are you a foo bar? Yes I am. Possibly, everyone is.\n"""
corpus = [txt1,txt2]
# Make new dir for the corpus.
corpusdir = 'newcorpus/'
if not os.path.isdir(corpusdir):
os.mkdir(corpusdir)
# Output the files into the directory.
filename = 0
for text in corpus:
filename+=1
with open(corpusdir+str(filename)+'.txt','w') as fout:
print>>fout, text
# Check that our corpus do exist and the files are correct.
assert os.path.isdir(corpusdir)
for infile, text in zip(sorted(os.listdir(corpusdir)),corpus):
assert open(corpusdir+infile,'r').read().strip() == text.strip()
# Create a new corpus by specifying the parameters
# (1) directory of the new corpus
# (2) the fileids of the corpus
# NOTE: in this case the fileids are simply the filenames.
newcorpus = PlaintextCorpusReader('newcorpus/', '.*')
# Access each file in the corpus.
for infile in sorted(newcorpus.fileids()):
print infile # The fileids of each file.
with newcorpus.open(infile) as fin: # Opens the file.
print fin.read().strip() # Prints the content of the file
print
# Access the plaintext; outputs pure string/basestring.
print newcorpus.raw().strip()
print
# Access paragraphs in the corpus. (list of list of list of strings)
# NOTE: NLTK automatically calls nltk.tokenize.sent_tokenize and
# nltk.tokenize.word_tokenize.
#
# Each element in the outermost list is a paragraph, and
# Each paragraph contains sentence(s), and
# Each sentence contains token(s)
print newcorpus.paras()
print
# To access pargraphs of a specific fileid.
print newcorpus.paras(newcorpus.fileids()[0])
# Access sentences in the corpus. (list of list of strings)
# NOTE: That the texts are flattened into sentences that contains tokens.
print newcorpus.sents()
print
# To access sentences of a specific fileid.
print newcorpus.sents(newcorpus.fileids()[0])
# Access just tokens/words in the corpus. (list of strings)
print newcorpus.words()
# To access tokens of a specific fileid.
print newcorpus.words(newcorpus.fileids()[0])
最后,要读取文本目录并创建其他语言的 NLTK 语料库,您必须首先确保您具有可 Python 调用的 word tokenization 和 sentence tokenization接受字符串/基本字符串输入并产生此类输出的模块:
>>> from nltk.tokenize import sent_tokenize, word_tokenize
>>> txt1 = """This is a foo bar sentence.\nAnd this is the first txtfile in the corpus."""
>>> sent_tokenize(txt1)
['This is a foo bar sentence.', 'And this is the first txtfile in the corpus.']
>>> word_tokenize(sent_tokenize(txt1)[0])
['This', 'is', 'a', 'foo', 'bar', 'sentence', '.']
【讨论】:
感谢您的澄清。不过,默认情况下支持许多语言。 如果有人收到AttributeError: __exit__
错误。使用open()
而不是with()
【参考方案2】:
我认为PlaintextCorpusReader
已经使用 punkt 分词器对输入进行了分段,至少如果您的输入语言是英语的话。
PlainTextCorpusReader's constructor
def __init__(self, root, fileids,
word_tokenizer=WordPunctTokenizer(),
sent_tokenizer=nltk.data.LazyLoader(
'tokenizers/punkt/english.pickle'),
para_block_reader=read_blankline_block,
encoding='utf8'):
您可以将单词和句子标记器传递给读者,但对于后者,默认值已经是 nltk.data.LazyLoader('tokenizers/punkt/english.pickle')
。
对于单个字符串,分词器将按如下方式使用(解释为 here,有关 punkt 分词器,请参阅第 5 节)。
>>> import nltk.data
>>> text = """
... Punkt knows that the periods in Mr. Smith and Johann S. Bach
... do not mark sentence boundaries. And sometimes sentences
... can start with non-capitalized words. i is a good variable
... name.
... """
>>> tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
>>> tokenizer.tokenize(text.strip())
【讨论】:
感谢您的解释。知道了。但是如何将分段的句子输出到单独的 txt 文件中? "The NLTK data package includes a pre-trained Punkt tokenizer for English."【参考方案3】: >>> import nltk
>>> from nltk.corpus import PlaintextCorpusReader
>>> corpus_root = './'
>>> newcorpus = PlaintextCorpusReader(corpus_root, '.*')
"""
if the ./ dir contains the file my_corpus.txt, then you
can view say all the words it by doing this
"""
>>> newcorpus.words('my_corpus.txt')
【讨论】:
为 devnagari 语言解决一些问题。【参考方案4】:from nltk.corpus.reader.plaintext import PlaintextCorpusReader
filecontent1 = "This is a cow"
filecontent2 = "This is a Dog"
corpusdir = 'nltk_data/'
with open(corpusdir + 'content1.txt', 'w') as text_file:
text_file.write(filecontent1)
with open(corpusdir + 'content2.txt', 'w') as text_file:
text_file.write(filecontent2)
text_corpus = PlaintextCorpusReader(corpusdir, ["content1.txt", "content2.txt"])
no_of_words_corpus1 = len(text_corpus.words("content1.txt"))
print(no_of_words_corpus1)
no_of_unique_words_corpus1 = len(set(text_corpus.words("content1.txt")))
no_of_words_corpus2 = len(text_corpus.words("content2.txt"))
no_of_unique_words_corpus2 = len(set(text_corpus.words("content2.txt")))
enter code here
【讨论】:
以上是关于使用 NLTK 创建新语料库的主要内容,如果未能解决你的问题,请参考以下文章