在 NLTK 中使用我自己的语料库而不是 movie_reviews 语料库进行分类
Posted
技术标签:
【中文标题】在 NLTK 中使用我自己的语料库而不是 movie_reviews 语料库进行分类【英文标题】:Using my own corpus instead of movie_reviews corpus for Classification in NLTK 【发布时间】:2015-05-30 07:13:59 【问题描述】:我使用下面的代码,我从Classification using movie review corpus in NLTK/Python得到它
import string
from itertools import chain
from nltk.corpus import movie_reviews as mr
from nltk.corpus import stopwords
from nltk.probability import FreqDist
from nltk.classify import NaiveBayesClassifier as nbc
import nltk
stop = stopwords.words('english')
documents = [([w for w in mr.words(i) if w.lower() not in stop and w.lower() not in string.punctuation], i.split('/')[0]) for i in mr.fileids()]
word_features = FreqDist(chain(*[i for i,j in documents]))
word_features = word_features.keys()[:100]
numtrain = int(len(documents) * 90 / 100)
train_set = [(i:(i in tokens) for i in word_features, tag) for tokens,tag in documents[:numtrain]]
test_set = [(i:(i in tokens) for i in word_features, tag) for tokens,tag in documents[numtrain:]]
classifier = nbc.train(train_set)
print nltk.classify.accuracy(classifier, test_set)
classifier.show_most_informative_features(5)
输出:
0.655
Most Informative Features
bad = True neg : pos = 2.0 : 1.0
script = True neg : pos = 1.5 : 1.0
world = True pos : neg = 1.5 : 1.0
nothing = True neg : pos = 1.5 : 1.0
bad = False pos : neg = 1.5 : 1.0
我想在 nltk 中创建自己的文件夹而不是 movie_reviews
,并将自己的文件放入其中。
【问题讨论】:
您的文件夹是什么样的?您可以发布文件夹中文件的sn-p吗?还是指向您的数据集的链接? 它与movie_reviews
文件夹完全相同,具有pos
和neg
文件夹。但我自己选择.txt
文件的内容
希望答案对您有帮助
@alvas 是的,很有帮助。谢谢。请您回答这个问题:link
【参考方案1】:
如果您的数据结构与 NLTK 中的 movie_review
语料库完全相同,则有两种方法可以“破解”您的方式:
1.将您的语料库目录放入您保存nltk.data
的位置
首先检查您的nltk.data
保存在哪里:
>>> import nltk
>>> nltk.data.find('corpora/movie_reviews')
FileSystemPathPointer(u'/home/alvas/nltk_data/corpora/movie_reviews')
然后将你的目录移动到保存nltk_data/corpora
的位置:
# Let's make a test corpus like `nltk.corpus.movie_reviews`
~$ mkdir my_movie_reviews
~$ mkdir my_movie_reviews/pos
~$ mkdir my_movie_reviews/neg
~$ echo "This is a great restaurant." > my_movie_reviews/pos/1.txt
~$ echo "Had a great time at chez jerome." > my_movie_reviews/pos/2.txt
~$ echo "Food fit for the ****" > my_movie_reviews/neg/1.txt
~$ echo "Slow service." > my_movie_reviews/neg/2.txt
~$ echo "README please" > my_movie_reviews/README
# Move it to `nltk_data/corpora/`
~$ mv my_movie_reviews/ nltk_data/corpora/
在你的 python 代码中:
>>> import string
>>> from nltk.corpus import LazyCorpusLoader, CategorizedPlaintextCorpusReader
>>> from nltk.corpus import stopwords
>>> my_movie_reviews = LazyCorpusLoader('my_movie_reviews', CategorizedPlaintextCorpusReader, r'(?!\.).*\.txt', cat_pattern=r'(neg|pos)/.*', encoding='ascii')
>>> mr = my_movie_reviews
>>>
>>> stop = stopwords.words('english')
>>> documents = [([w for w in mr.words(i) if w.lower() not in stop and w.lower() not in string.punctuation], i.split('/')[0]) for i in mr.fileids()]
>>> for i in documents:
... print i
...
([u'Food', u'fit', u'****'], u'neg')
([u'Slow', u'service'], u'neg')
([u'great', u'restaurant'], u'pos')
([u'great', u'time', u'chez', u'jerome'], u'pos')
(详情请见https://github.com/nltk/nltk/blob/develop/nltk/corpus/util.py#L21和https://github.com/nltk/nltk/blob/develop/nltk/corpus/init.py#L144)
2。创建您自己的CategorizedPlaintextCorpusReader
如果您无权访问nltk.data
目录并且想使用自己的语料库,请尝试以下操作:
# Let's say that your corpus is saved on `/home/alvas/my_movie_reviews/`
>>> import string; from nltk.corpus import stopwords
>>> from nltk.corpus import CategorizedPlaintextCorpusReader
>>> mr = CategorizedPlaintextCorpusReader('/home/alvas/my_movie_reviews', r'(?!\.).*\.txt', cat_pattern=r'(neg|pos)/.*', encoding='ascii')
>>> stop = stopwords.words('english')
>>> documents = [([w for w in mr.words(i) if w.lower() not in stop and w.lower() not in string.punctuation], i.split('/')[0]) for i in mr.fileids()]
>>>
>>> for doc in documents:
... print doc
...
([u'Food', u'fit', u'****'], 'neg')
([u'Slow', u'service'], 'neg')
([u'great', u'restaurant'], 'pos')
([u'great', u'time', u'chez', u'jerome'], 'pos')
在Creating a custom categorized corpus in NLTK and Python 和Using my own corpus for category classification in Python NLTK 上提出了类似的问题
下面是完整的代码:
import string
from itertools import chain
from nltk.corpus import stopwords
from nltk.probability import FreqDist
from nltk.classify import NaiveBayesClassifier as nbc
from nltk.corpus import CategorizedPlaintextCorpusReader
import nltk
mydir = '/home/alvas/my_movie_reviews'
mr = CategorizedPlaintextCorpusReader(mydir, r'(?!\.).*\.txt', cat_pattern=r'(neg|pos)/.*', encoding='ascii')
stop = stopwords.words('english')
documents = [([w for w in mr.words(i) if w.lower() not in stop and w.lower() not in string.punctuation], i.split('/')[0]) for i in mr.fileids()]
word_features = FreqDist(chain(*[i for i,j in documents]))
word_features = word_features.keys()[:100]
numtrain = int(len(documents) * 90 / 100)
train_set = [(i:(i in tokens) for i in word_features, tag) for tokens,tag in documents[:numtrain]]
test_set = [(i:(i in tokens) for i in word_features, tag) for tokens,tag in documents[numtrain:]]
classifier = nbc.train(train_set)
print nltk.classify.accuracy(classifier, test_set)
classifier.show_most_informative_features(5)
【讨论】:
在此之后添加其他行 =)。在documents = ...
行之后使用完全相同的代码。
你能解释一下你的意思吗?我不明白。
要获得最多信息功能,请使用classifier.show_most_informative_features(5)
非常感谢。有用。现在我试着理解代码;)
@alvas 我在 word_features = word_features.keys()[:100] 行中遇到错误,说 TypeError: 'dict_keys' object is not subscriptable 。可能的原因是什么?以上是关于在 NLTK 中使用我自己的语料库而不是 movie_reviews 语料库进行分类的主要内容,如果未能解决你的问题,请参考以下文章