cv2 Farneback 光流值太低
Posted
技术标签:
【中文标题】cv2 Farneback 光流值太低【英文标题】:cv2 Farneback Optical FLow values are too low 【发布时间】:2020-05-07 00:46:29 【问题描述】:我正在尝试计算两帧之间的光流,然后使用计算的光流扭曲前一帧。我发现 cv2 有 Farneback Optical FLow,所以我用它来计算 Flow。我从cv2 tutorial 中获取默认参数,并使用this answer 中给出的代码扭曲框架。但是当我看到扭曲的帧时,它与前一帧完全一样,没有变化(数组相等)。
经过进一步调试,我发现计算出的流量值太低了。为什么会这样?我是不是做错了什么?
代码:
def get_optical_flow(prev_frame: numpy.ndarray, next_frame: numpy.ndarray) -> numpy.ndarray:
prev_gray = skimage.color.rgb2gray(prev_frame)
next_gray = skimage.color.rgb2gray(next_frame)
flow = cv2.calcOpticalFlowFarneback(prev_gray, next_gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)
return flow
def warp_frame(prev_frame: numpy.ndarray, flow: numpy.ndarray):
h, w = flow.shape[:2]
flow = -flow
flow[:,:,0] += numpy.arange(w)
flow[:,:,1] += numpy.arange(h)[:,numpy.newaxis]
# res = cv2.remap(img, flow, None, cv2.INTER_LINEAR)
next_frame = cv2.remap(prev_frame, flow, None, cv2.INTER_LINEAR)
return next_frame
def demo1():
prev_frame_path = Path('./frame025.png')
next_frame_path = Path('./frame027.png')
prev_frame = skimage.io.imread(prev_frame_path.as_posix())
next_frame = skimage.io.imread(next_frame_path.as_posix())
flow = get_optical_flow(prev_frame, next_frame)
print(f'Flow: max:flow.max(), min:flow.min(), mean:flow.__abs__().mean()')
warped_frame = warp_frame(prev_frame, flow)
print(numpy.array_equal(prev_frame, warped_frame))
pyplot.subplot(1,3,1)
pyplot.imshow(prev_frame)
pyplot.subplot(1,3,2)
pyplot.imshow(next_frame)
pyplot.subplot(1,3,3)
pyplot.imshow(warped_frame)
pyplot.show()
return
输入图像:
输出: Warped Image 与 prev image 完全相同,而它应该看起来像 next image。
感谢任何帮助!
【问题讨论】:
【参考方案1】:问题在于将 rgb 帧转换为灰色。 skimage.color.rgb2gray()
将强度范围从 [0,255]
更改为 [0,1]
。将其改回[0,255]
有效!
def get_optical_flow(prev_frame: numpy.ndarray, next_frame: numpy.ndarray) -> numpy.ndarray:
prev_gray = (skimage.color.rgb2gray(prev_frame) * 255).astype('uint8')
next_gray = (skimage.color.rgb2gray(next_frame) * 255).astype('uint8')
flow = cv2.calcOpticalFlowFarneback(prev_gray, next_gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)
return flow
【讨论】:
以上是关于cv2 Farneback 光流值太低的主要内容,如果未能解决你的问题,请参考以下文章
机器学习进阶-光流估计 1.cv2.goodFeaturesToTrack(找出光流估计所需要的角点) 2.cv2.calcOpticalFlowPyrLK(获得光流检测后的角点位置) 3.cv2.