Huggingface 转换器模型返回字符串而不是 logits
Posted
技术标签:
【中文标题】Huggingface 转换器模型返回字符串而不是 logits【英文标题】:Huggingface transformer model returns string instead of logits 【发布时间】:2021-03-02 05:42:26 【问题描述】:我正在尝试从 huggingface 网站运行此示例。 https://huggingface.co/transformers/task_summary.html。似乎模型返回两个字符串而不是 logits!这会导致 torch.argmax() 引发错误
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
import torch
tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad")
model = AutoModelForQuestionAnswering.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad", return_dict=True)
text = r"""???? Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides general-purpose
architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet…) for Natural Language Understanding (NLU) and Natural
Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between
TensorFlow 2.0 and PyTorch.
"""
questions = ["How many pretrained models are available in ???? Transformers?",
"What does ???? Transformers provide?",
"???? Transformers provides interoperability between which frameworks?"]
for question in questions:
inputs = tokenizer(question, text, add_special_tokens=True, return_tensors="pt")
input_ids = inputs["input_ids"].tolist()[0] # the list of all indices of words in question + context
text_tokens = tokenizer.convert_ids_to_tokens(input_ids) # Get the tokens for the question + context
answer_start_scores, answer_end_scores = model(**inputs)
answer_start = torch.argmax(answer_start_scores) # Get the most likely beginning of answer with the argmax of the score
answer_end = torch.argmax(answer_end_scores) + 1 # Get the most likely end of answer with the argmax of the score
answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(input_ids[answer_start:answer_end]))
print(f"Question: question")
print(f"Answer: answer")
【问题讨论】:
有同样的问题(和头痛)-***.com/q/67511285/758836,所以谢谢你,因为这里有答案! 【参考方案1】:由于最近的一次更新,模型现在返回特定于任务的输出对象(它们是字典)而不是普通的元组。您使用的网站尚未更新以反映该更改。您可以通过指定 return_dict=False
来强制模型返回一个元组:
answer_start_scores, answer_end_scores = model(**inputs, return_dict=False)
或者您可以通过调用values()
方法从QuestionAnsweringModelOutput
对象中提取值:
answer_start_scores, answer_end_scores = model(**inputs).values()
甚至使用QuestionAnsweringModelOutput
对象:
outputs = model(**inputs)
answer_start_scores = outputs.start_logits
answer_end_scores = outputs.end_logits
【讨论】:
以上是关于Huggingface 转换器模型返回字符串而不是 logits的主要内容,如果未能解决你的问题,请参考以下文章
如何将 HuggingFace 的 Seq2seq 模型转换为 onnx 格式
将 AllenNLP 解释与 HuggingFace 模型一起使用
在训练 Bert 二进制分类模型时,Huggingface 变形金刚返回“ValueError:要解包的值太多(预期为 2)”