在训练 Bert 二进制分类模型时,Huggingface 变形金刚返回“ValueError:要解包的值太多(预期为 2)”
Posted
技术标签:
【中文标题】在训练 Bert 二进制分类模型时,Huggingface 变形金刚返回“ValueError:要解包的值太多(预期为 2)”【英文标题】:Huggingface Transformers returning 'ValueError: too many values to unpack (expected 2)', upon training a Bert binary classification model 【发布时间】:2021-07-15 11:58:19 【问题描述】:我正在学习如何使用 Huggingface Transformers 库,在 Kaggle Twitter 灾难数据集上构建二进制分类 BERT 模型。
进入训练循环后,在 forward() 函数执行期间出现以下错误:
Epoch 1/50
----------
Aici incepe train_epoch
/usr/local/lib/python3.7/dist-packages/torch/utils/data/dataloader.py:477: UserWarning: This DataLoader will create 4 worker processes in total. Our suggested max number of worker in current system is 2, which is smaller than what this DataLoader is going to create. Please be aware that excessive worker creation might get DataLoader running slow or even freeze, lower the worker number to avoid potential slowness/freeze if necessary.
cpuset_checked))
----Checkpoint train_epoch 2----
----Checkpoint train_epoch 2----
----forward checkpoint 1----
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-175-fd9f98819b6f> in <module>()
23 device,
24 scheduler,
---> 25 df_train.shape[0]
26 )
27 print(f'Train loss train_loss Accuracy:train_acc')
4 frames
<ipython-input-173-bfbecd87c5ec> in train_epoch(model, data_loader, loss_fn, optimizer, device, scheduler, n_examples)
21 targets = d['targets'].to(device)
22 print('----Checkpoint train_epoch 2----')
---> 23 outputs = model(input_ids=input_ids,attention_mask=attention_mask)
24 print('----Checkpoint train_epoch 3----')
25 _,preds = torch.max(outputs,dim=1)
/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
<ipython-input-171-e754ea3edc36> in forward(self, input_ids, attention_mask)
16 input_ids=input_ids,
17 attention_mask=attention_mask,
---> 18 return_dict=False)
19
20 print('----forward checkpoint 2-----')
/usr/local/lib/python3.7/dist-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
887 result = self._slow_forward(*input, **kwargs)
888 else:
--> 889 result = self.forward(*input, **kwargs)
890 for hook in itertools.chain(
891 _global_forward_hooks.values(),
/usr/local/lib/python3.7/dist-packages/transformers/models/bert/modeling_bert.py in forward(self, input_ids, attention_mask, token_type_ids, position_ids, head_mask, inputs_embeds, encoder_hidden_states, encoder_attention_mask, past_key_values, use_cache, output_attentions, output_hidden_states, return_dict)
923 elif input_ids is not None:
924 input_shape = input_ids.size()
--> 925 batch_size, seq_length = input_shape
926 elif inputs_embeds is not None:
927 input_shape = inputs_embeds.size()[:-1]
ValueError: too many values to unpack (expected 2)
起初,我以为这与他们添加的 return_dict=False 更改有关,但我错了。 下面是分类器和训练循环的代码
分类器:
class DisasterClassifier(nn.Module):
def __init__(self, n_classes):
super(DisasterClassifier,self).__init__()
self.bert=BertModel.from_pretrained(PRE_TRAINED_MODEL,return_dict=False)
self.drop=nn.Dropout(p=0.3) # in timpul antrenarii, valori aleatorii sunt inlocuite cu 0, cu probabilitate p -> regularization and preventing the co-adaptation of neurons
self.out = nn.Linear(self.bert.config.hidden_size,n_classes)
def forward(self,input_ids,attention_mask):
print('----forward checkpoint 1----')
bertOutput = self.bert(
input_ids=input_ids,
attention_mask=attention_mask,
return_dict=False)
print('----forward checkpoint 2-----')
output = self.drop(bertOutput['pooler_output'])
return self.out(output)`
训练时期:
optimizer = AdamW(model.parameters(),lr = 2e-5,correct_bias=False)
total_steps = len(train_data_loader)*EPOCHS
scheduler = get_linear_schedule_with_warmup(
optimizer,
num_warmup_steps=0,
num_training_steps=total_steps)
loss_fn = nn.CrossEntropyLoss().to(device)
def train_epoch(model,data_loader,loss_fn,optimizer,device,scheduler,n_examples):
print('Aici incepe train_epoch')
model = model.train()
losses =[]
correct_predictions = 0
for d in data_loader:
print('----Checkpoint train_epoch 2----')
input_ids = d['input_ids'].to(device)
attention_mask=d['attention_mask'].to(device)
targets = d['targets'].to(device)
print('----Checkpoint train_epoch 2----')
outputs = model(input_ids=input_ids,attention_mask=attention_mask)
print('----Checkpoint train_epoch 3----')
_,preds = torch.max(outputs,dim=1)
loss = loss_fn(outputs, targets)
correct_predictions += torch.sum(preds == targets)
losses.append(loss.item())
#backpropagation steps
loss.backward()
nn.utils.clip_grad_norm_(model.parameters,max_norm=1.0)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
return (correct_predictions.double() / n_examples), np.mean(losses)
还有训练循环:
history = defaultdict(list)
best_accuracy = 0
for epoch in range(EPOCHS):
print(f'Epoch epoch + 1/EPOCHS')
print('-' * 10)
# train_acc,train_loss = train_epoch(model,
# train_data_loader,
# loss_fn,
# optimizer,
# device,
# scheduler,
# len(df_train))
train_acc, train_loss = train_epoch(
model,
train_data_loader,
loss_fn,
optimizer,
device,
scheduler,
df_train.shape[0]
)
print(f'Train loss train_loss Accuracy:train_acc')
val_acc, val_loss = eval_model(model,val_data_loader,loss_fn,device,len(df_val))
print(f'Validation loss val_loss Accuracy:val_acc')
print()
history['train_acc'].append(train_acc)
history['train_loss'].append(train_loss)
history['val_acc'].append(val_acc)
history['val_loss'].append(val_loss)
if val_acc > best_accuracy:
torch.save(model.state_dict(), 'best_model_state.bin')
best_accuracy = val_acc
有人遇到过类似的情况吗?
【问题讨论】:
嗨,我在使用BertTokenizer
时遇到了同样的错误。我做encoding = tokenizer([[prompt, prompt, prompt], [choice0, choice1, choice2]], return_tensors='tf', padding=True))
并得到ValueError: too many values to unpack (expected 2)
。当我做encoding = tokenizer([[prompt, prompt], [choice0, choice1]], return_tensors='tf', padding=True)
时,它可以工作。知道为什么吗?我想微调TFBertForMultipleChoice
,使每个问题(prompt
)都有三个选择,而不是两个:huggingface.co/transformers/model_doc/…。
【参考方案1】:
我也遇到了同样的问题。您需要检查 input_ids 的形状,应该是 (batch_size, seq_length)。在您的情况下,我猜它类似于 (1, batch_size, seq_length) 或其他什么。这样做:
input_ids = input_ids.squeeze(0)
outputs = model(input_ids=input_ids,attention_mask=attention_mask)
【讨论】:
以上是关于在训练 Bert 二进制分类模型时,Huggingface 变形金刚返回“ValueError:要解包的值太多(预期为 2)”的主要内容,如果未能解决你的问题,请参考以下文章