BertSumExt 不生成摘要

Posted

技术标签:

【中文标题】BertSumExt 不生成摘要【英文标题】:BertSumExt is not producing Summaries 【发布时间】:2020-08-22 03:17:20 【问题描述】:

我试图让抽取式 BertSUM 总结器工作 (Paper and Github here) 但我仍然收到以下消息

xent 0 at step -1"

并且没有生成摘要。我做错了什么?有人可以帮我解决这个问题,也许可以提供一个工作示例。当我在 google colab 中执行以下操作时出现上述消息:

需要 1 个克隆 GitHub

!git clone https://github.com/Alcamech/PreSumm.git

2 更改 Git-Branch 以汇总原始文本数据

%cd /content/PreSumm
!git checkout -b  Raw_Input origin/PreSumm_Raw_Input_Text_Setup
!git pull

3 安装要求

!pip install torch==1.1.0 pytorch_transformers tensorboardX multiprocess pyrouge

4 安装 CNN/DM 提取 bertext_cnndm_transformer.pt

!gdown https://drive.google.com/uc?id=1kKWoV0QCbeIuFt85beQgJ4v0lujaXobJ&export=download
!unzip /content/PreSumm/models/bertext_cnndm_transformer.zip

4.1 为 CNN/Dailymail 下载预处理数据

%cd /content/PreSumm/bert_data/
!gdown https://drive.google.com/uc?id=1DN7ClZCCXsk2KegmC6t4ClBwtAf5galI&export=download
!unzip /content/PreSumm/bert_data/bert_data_cnndm_final.zip

5 更改为 /src 文件夹

cd /content/PreSumm/src/

6 运行提取摘要器

!python /content/PreSumm/src/train.py -task ext -mode test_text -test_from /content/PreSumm/models/bertext_cnndm_transformer.pt -text_src /content/PreSumm/raw_data/temp_ext.raw_src -text_tgt /content/PreSumm/results/result.txt -log_file /content/PreSumm/logs/ext_bert_cnndm

第6步的输出是:

[2020-05-07 11:20:12,355 INFO] Loading checkpoint from /content/PreSumm/models/bertext_cnndm_transformer.pt
Namespace(accum_count=1, alpha=0.6, batch_size=140, beam_size=5, bert_data_path='../bert_data_new/cnndm', beta1=0.9, beta2=0.999, block_trigram=True, dec_dropout=0.2, dec_ff_size=2048, dec_heads=8, dec_hidden_size=768, dec_layers=6, enc_dropout=0.2, enc_ff_size=512, enc_hidden_size=512, enc_layers=6, encoder='bert', ext_dropout=0.2, ext_ff_size=2048, ext_heads=8, ext_hidden_size=768, ext_layers=2, finetune_bert=True, generator_shard_size=32, gpu_ranks=[0], label_smoothing=0.1, large=False, load_from_extractive='', log_file='/content/PreSumm/logs/ext_bert_cnndm', lr=1, lr_bert=0.002, lr_dec=0.002, max_grad_norm=0, max_length=150, max_ndocs_in_batch=6, max_pos=512, max_tgt_len=140, min_length=15, mode='test_text', model_path='../models/', optim='adam', param_init=0, param_init_glorot=True, recall_eval=False, report_every=1, report_rouge=True, result_path='../results/cnndm', save_checkpoint_steps=5, seed=666, sep_optim=False, share_emb=False, task='ext', temp_dir='../temp', test_all=False, test_batch_size=200, test_from='/content/PreSumm/models/bertext_cnndm_transformer.pt', test_start_from=-1, text_src='/content/PreSumm/raw_data/temp_ext.raw_src', text_tgt='/content/PreSumm/results/result.txt', train_from='', train_steps=1000, use_bert_emb=False, use_interval=True, visible_gpus='-1', warmup_steps=8000, warmup_steps_bert=8000, warmup_steps_dec=8000, world_size=1)
[2020-05-07 11:20:13,361 INFO] https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json not found in cache or force_download set to True, downloading to /tmp/tmpvck0jwoy
100% 433/433 [00:00<00:00, 309339.74B/s]
[2020-05-07 11:20:13,498 INFO] copying /tmp/tmpvck0jwoy to cache at ../temp/4dad0251492946e18ac39290fcfe91b89d370fee250efe9521476438fe8ca185.7156163d5fdc189c3016baca0775ffce230789d7fa2a42ef516483e4ca884517
[2020-05-07 11:20:13,499 INFO] creating metadata file for ../temp/4dad0251492946e18ac39290fcfe91b89d370fee250efe9521476438fe8ca185.7156163d5fdc189c3016baca0775ffce230789d7fa2a42ef516483e4ca884517
[2020-05-07 11:20:13,499 INFO] removing temp file /tmp/tmpvck0jwoy
[2020-05-07 11:20:13,499 INFO] loading configuration file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-config.json from cache at ../temp/4dad0251492946e18ac39290fcfe91b89d370fee250efe9521476438fe8ca185.7156163d5fdc189c3016baca0775ffce230789d7fa2a42ef516483e4ca884517
[2020-05-07 11:20:13,500 INFO] Model config 
  "architectures": [
    "BertForMaskedLM"
  ],
  "attention_probs_dropout_prob": 0.1,
  "finetuning_task": null,
  "hidden_act": "gelu",
  "hidden_dropout_prob": 0.1,
  "hidden_size": 768,
  "initializer_range": 0.02,
  "intermediate_size": 3072,
  "layer_norm_eps": 1e-12,
  "max_position_embeddings": 512,
  "model_type": "bert",
  "num_attention_heads": 12,
  "num_hidden_layers": 12,
  "num_labels": 2,
  "output_attentions": false,
  "output_hidden_states": false,
  "pad_token_id": 0,
  "pruned_heads": ,
  "torchscript": false,
  "type_vocab_size": 2,
  "vocab_size": 30522


[2020-05-07 11:20:13,571 INFO] https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin not found in cache or force_download set to True, downloading to /tmp/tmp6b78t4_2
100% 440473133/440473133 [00:06<00:00, 71548841.10B/s]
[2020-05-07 11:20:19,804 INFO] copying /tmp/tmp6b78t4_2 to cache at ../temp/aa1ef1aede4482d0dbcd4d52baad8ae300e60902e88fcb0bebdec09afd232066.36ca03ab34a1a5d5fa7bc3d03d55c4fa650fed07220e2eeebc06ce58d0e9a157
[2020-05-07 11:20:21,212 INFO] creating metadata file for ../temp/aa1ef1aede4482d0dbcd4d52baad8ae300e60902e88fcb0bebdec09afd232066.36ca03ab34a1a5d5fa7bc3d03d55c4fa650fed07220e2eeebc06ce58d0e9a157
[2020-05-07 11:20:21,212 INFO] removing temp file /tmp/tmp6b78t4_2
[2020-05-07 11:20:21,267 INFO] loading weights file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin from cache at ../temp/aa1ef1aede4482d0dbcd4d52baad8ae300e60902e88fcb0bebdec09afd232066.36ca03ab34a1a5d5fa7bc3d03d55c4fa650fed07220e2eeebc06ce58d0e9a157
gpu_rank 0
[2020-05-07 11:20:24,645 INFO] * number of parameters: 120512513
[2020-05-07 11:20:24,736 INFO] https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt not found in cache or force_download set to True, downloading to /tmp/tmpyv3mwnb6
100% 231508/231508 [00:00<00:00, 4268647.82B/s]
[2020-05-07 11:20:25,044 INFO] copying /tmp/tmpyv3mwnb6 to cache at /root/.cache/torch/pytorch_transformers/26bc1ad6c0ac742e9b52263248f6d0f00068293b33709fae12320c0e35ccfbbb.542ce4285a40d23a559526243235df47c5f75c197f04f37d1a0c124c32c9a084
[2020-05-07 11:20:25,045 INFO] creating metadata file for /root/.cache/torch/pytorch_transformers/26bc1ad6c0ac742e9b52263248f6d0f00068293b33709fae12320c0e35ccfbbb.542ce4285a40d23a559526243235df47c5f75c197f04f37d1a0c124c32c9a084
[2020-05-07 11:20:25,045 INFO] removing temp file /tmp/tmpyv3mwnb6
[2020-05-07 11:20:25,046 INFO] loading vocabulary file https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt from cache at /root/.cache/torch/pytorch_transformers/26bc1ad6c0ac742e9b52263248f6d0f00068293b33709fae12320c0e35ccfbbb.542ce4285a40d23a559526243235df47c5f75c197f04f37d1a0c124c32c9a084
  0% 0/2 [00:00<?, ?it/s]
[2020-05-07 11:20:25,115 INFO] Validation xent: 0 at step -1

并且 result.txt 文件为空。

Here 是我的 google colab 副本的链接,您可以在其中看到完整的colde。 我还在 origin-github-repo here 上尝试了这些步骤,我得到了同样的错误。 感谢您的帮助。

【问题讨论】:

请在此处发布minimal reproducible example,而不是在外部链接中。 【参考方案1】:

您可以查看 https://github.com/microsoft/nlp-recipes/blob/master/examples/text_summarization/extractive_summarization_cnndm_transformer.ipynb 的 bertsum 提取摘要示例

【讨论】:

以上是关于BertSumExt 不生成摘要的主要内容,如果未能解决你的问题,请参考以下文章

摘要身份验证生成“令牌”

文本抽取式摘要

论文分享 摘要生成 Paper Abstract Writing through Editing Mechanism

摘要认证

最新论文解读 | 基于预训练自然语言生成的文本摘要方法

数字摘要