python - 如何在python scikit-learn中进行字典向量化后预测单个新样本?
Posted
技术标签:
【中文标题】python - 如何在python scikit-learn中进行字典向量化后预测单个新样本?【英文标题】:How to predict a single new sample after dict-vectorization in python scikit-learn? 【发布时间】:2016-06-13 02:41:28 【问题描述】:我正在使用逻辑回归分类器来预测种族类别标签 0、1。我的数据被分成测试和训练样本,并被字典向量化为稀疏矩阵。
以下是工作代码,我在其中预测和验证 X_train 和 X_test,它们是矢量化特征的一部分:
for i in mass[k]:
df = df_temp # reset df before each loop
#$$
if 1==1:
count+=1
ethnicity_tar = str(i)
############################################
############################################
def ethnicity_target(row):
try:
if row[ethnicity_var] == ethnicity_tar:
return 1
else:
return 0
except: return None
df['ethnicity_scan'] = df.apply(ethnicity_target, axis=1)
print '1=', ethnicity_tar
print '0=', 'non-'+ethnicity_tar
# Random sampling a smaller dataframe for debugging
rows = df.sample(n=subsample_size, random_state=seed) # Seed gives fixed randomness
df = DataFrame(rows)
print 'Class count:'
print df['ethnicity_scan'].value_counts()
# Assign X and y variables
X = df.raw_name.values
X2 = df.name.values
X3 = df.gender.values
X4 = df.location.values
y = df.ethnicity_scan.values
# Feature extraction functions
def feature_full_name(nameString):
try:
full_name = nameString
if len(full_name) > 1: # not accept name with only 1 character
return full_name
else: return '?'
except: return '?'
def feature_full_last_name(nameString):
try:
last_name = nameString.rsplit(None, 1)[-1]
if len(last_name) > 1: # not accept name with only 1 character
return last_name
else: return '?'
except: return '?'
def feature_full_first_name(nameString):
try:
first_name = nameString.rsplit(' ', 1)[0]
if len(first_name) > 1: # not accept name with only 1 character
return first_name
else: return '?'
except: return '?'
# Transform format of X variables, and spit out a numpy array for all features
my_dict = ['last-name': feature_full_last_name(i) for i in X]
my_dict5 = ['first-name': feature_full_first_name(i) for i in X]
all_dict = []
for i in range(0, len(my_dict)):
temp_dict = dict(
my_dict[i].items() + my_dict5[i].items()
)
all_dict.append(temp_dict)
newX = dv.fit_transform(all_dict)
# Separate the training and testing data sets
X_train, X_test, y_train, y_test = cross_validation.train_test_split(newX, y, test_size=testTrainSplit)
# Fitting X and y into model, using training data
classifierUsed2.fit(X_train, y_train)
# Making predictions using trained data
y_train_predictions = classifierUsed2.predict(X_train)
y_test_predictions = classifierUsed2.predict(X_test)
但是,我只想预测一个名字,例如“John Carter”并预测种族标签。我将y_train_predictions = classifierUsed2.predict(X_train)
和y_train_predictions = classifierUsed2.predict(X_train)
替换为以下行,但导致错误:
print classifierUsed2.predict(["John Carter"])
#error
Error: X has 1 features per sample; expecting 103916
【问题讨论】:
尝试类似 classifierUsed2.predict(dv.transform("John Carter")) 谢谢,但它说“错误:'str'对象没有属性'iteritems'” 【参考方案1】:您需要以与训练数据完全相同的方式转换数据,例如(如果您的输入数据只是字符串列表)
classifierUsed2.predict(dv.transform(["John Carter"]))
【讨论】:
以上是关于python - 如何在python scikit-learn中进行字典向量化后预测单个新样本?的主要内容,如果未能解决你的问题,请参考以下文章
如何在 scikit-learn 的 SVM 中使用非整数字符串标签? Python
如何在python中使用scikit-image greycomatrix()函数?
如何在 Python/Scikit Learn 中转换输入的结构回归