如何调整/选择 AffinityPropagation 的偏好参数?
Posted
技术标签:
【中文标题】如何调整/选择 AffinityPropagation 的偏好参数?【英文标题】:How to tune / choose the preference parameter of AffinityPropagation? 【发布时间】:2020-01-24 14:37:26 【问题描述】:我有很大的“成对相似矩阵”字典,如下所示:
similarity['group1']
:
array([[1. , 0. , 0. , 0. , 0. ],
[0. , 1. , 0.09 , 0.09 , 0. ],
[0. , 0.09 , 1. , 0.94535157, 0. ],
[0. , 0.09 , 0.94535157, 1. , 0. ],
[0. , 0. , 0. , 0. , 1. ]])
简而言之,前一个矩阵的每个元素都是record_i
和record_j
相似(包括0 和1),1
完全相似和0
完全不同的概率。
然后我将每个相似度矩阵输入AffinityPropagation
算法,以便对相似记录进行分组/聚类:
sim = similarities['group1']
clusterer = AffinityPropagation(affinity='precomputed',
damping=0.5,
max_iter=25000,
convergence_iter=2500,
preference=????)) # ISSUE here
affinity = clusterer.fit(sim)
cluster_centers_indices = affinity.cluster_centers_indices_
labels = affinity.labels_
但是,由于我在多个相似度矩阵上运行上述方法,因此我需要一个通用的 preference
参数,我似乎无法对其进行调整。
它在文档中说它默认设置为相似度矩阵的中值,但是我在这个设置中得到了很多误报,有时工作的平均值有时会给出太多的集群等......
例如:使用偏好参数时,这些是我从相似度矩阵中得到的结果
preference = default # which is the median (value 0.2) of the similarity matrix
:(不正确结果,我们看到记录18
不应该存在,因为与其他记录的相似度非常低):
# Indexes of the elements in Cluster n°5: [15, 18, 22, 27]
'15_18': 0.08,
'15_22': 0.964546229533378,
'15_27': 0.6909703138051403,
'18_22': 0.12, # Not Ok, the similarity is too low
'18_27': 0.19, # Not Ok, the similarity is too low
'22_27': 0.6909703138051403
preference = 0.2 in fact from 0.11 to 0.26
:(正确结果,因为记录相似):
# Indexes of the elements in Cluster n°5: [15, 22, 27]
'15_22': 0.964546229533378,
'15_27': 0.6909703138051403,
'22_27': 0.6909703138051403
我的问题是:我应该如何选择这个preference
参数以使其具有概括性?
【问题讨论】:
【参考方案1】:简单粗暴grid search
解决方案可以这样实现,如果连接得分低于某个阈值(例如 0.5),我们将使用preference
参数的调整值。
一个简单的实现如下所示。
首先,测试一个集群是否需要调优的函数,在本例中阈值为0.5
:
def is_tuning_required(similarity_matrix, rows_of_cluster):
rows = similarity_matrix[rows_of_cluster]
for row in rows:
for col_index in rows_of_cluster:
score = row[col_index]
if score > 0.5:
continue
return True
return False
建立一个偏好值范围,集群将根据这些值运行:
def get_pref_range(similarity):
starting_point = np.median(similarity)
if starting_point == 0:
starting_point = np.mean(similarity)
# Let's try to accelerate the pace of values picking
step = 1 if starting_point >= 0.05 else step = 2
preference_tuning_range = [starting_point]
max_val = starting_point
while max_val < 1:
max_val *= 1.25 if max_val > 0.1 and step == 2 else step
preference_tuning_range.append(max_val)
min_val = starting_point
if starting_point >= 0.05:
while min_val > 0.01:
min_val /= step
preference_tuning_range.append(min_val)
return preference_tuning_range
一个普通的AfinityPropagation
,传递了一个preference
参数:
def run_clustering(similarity, preference):
clusterer = AffinityPropagation(damping=0.9,
affinity='precomputed',
max_iter=5000,
convergence_iter=2500,
verbose=False,
preference=preference)
affinity = clusterer.fit(similarity)
labels = affinity.labels_
return labels, len(set(labels)), affinity.cluster_centers_indices_
我们实际上会以相似度(1 - 距离)矩阵作为参数调用的方法:
def run_ideal_clustering(similarity):
preference_tuning_range = get_pref_range(similarity)
best_tested_preference = None
for preference in preference_tuning_range:
labels, labels_count, cluster_centers_indices = run_clustering(similarity, preference)
needs_tuning = False
wrong_clusters = 0
for label_index in range(labels_count):
cluster_elements_indexes = np.where(labels == label_index)[0]
tuning_required = is_tuning_required(similarity, cluster_elements_indexes)
if tuning_required:
wrong_clusters += 1
if not needs_tuning:
needs_tuning = True
if best_tested_preference is None or wrong_clusters < best_tested_preference[1]:
best_tested_preference = (preference, wrong_clusters)
if not needs_tuning:
return labels, labels_count, cluster_centers_indices
# The clustering has not been tuned enough during the iterations, we choose the less wrong clusters
return run_clustering(similarity, preference)
显然,这是一种蛮力解决方案,在大型数据集/相似性矩阵中无法发挥作用。
如果发布更简单更好的解决方案,我会接受。
【讨论】:
以上是关于如何调整/选择 AffinityPropagation 的偏好参数?的主要内容,如果未能解决你的问题,请参考以下文章