从 MultiIndex DataFrame 为切片分配新值

Posted

技术标签:

【中文标题】从 MultiIndex DataFrame 为切片分配新值【英文标题】:Assign new values to slice from MultiIndex DataFrame 【发布时间】:2013-05-25 21:23:22 【问题描述】:

我想修改 DataFrame 中某列的一些值。目前,我通过原始df 的多索引从选择中获得了一个视图(并且修改确实改变了df)。

这是一个例子:

In [1]: arrays = [np.array(['bar', 'bar', 'baz', 'qux', 'qux', 'bar']),
                  np.array(['one', 'two', 'one', 'one', 'two', 'one']),
                  np.arange(0, 6, 1)]
In [2]: df = pd.DataFrame(randn(6, 3), index=arrays, columns=['A', 'B', 'C'])

In [3]: df
                  A         B         C
bar one 0 -0.088671  1.902021 -0.540959
    two 1  0.782919 -0.733581 -0.824522
baz one 2 -0.827128 -0.849712  0.072431
qux one 3 -0.328493  1.456945  0.587793
    two 4 -1.466625  0.720638  0.976438
bar one 5 -0.456558  1.163404  0.464295

我尝试将df 的一部分修改为标量值:

In [4]: df.ix['bar', 'two', :]['A']
Out[4]:
1    0.782919
Name: A, dtype: float64

In [5]: df.ix['bar', 'two', :]['A'] = 9999
# df is unchanged

我真的很想修改列中的几个值(并且由于索引返回一个向量,而不是一个标量值,我认为这更有意义):

In [6]: df.ix['bar', 'one', :]['A'] = [999, 888]
# again df remains unchanged

我正在使用熊猫 0.11。有没有简单的方法可以做到这一点?

当前的解决方案是从一个新的重新创建 df 并修改我想要的值。但它并不优雅,并且在复杂的数据帧上可能非常繁重。在我看来,问题应该来自 .ix 和 .loc 不是返回视图而是返回副本。

【问题讨论】:

为什么是-1票?你至少能解释一下吗? +1 一个很好的问题,一个令人困惑的问题。我唯一能想到的是因为标题不具描述性而被否决了? (但谁知道呢!) 抱歉标题,但我不是英语母语人士,而且主题有点复杂,所以很难找到一个好的 :-) 如果你想给我一个标题,我可以更改当前一个。 我对其进行了调整,但我不会担心这样的反对票。快乐熊猫。 感谢您的调整。更加干净和精确:-) 【参考方案1】:

对帧进行排序,然后使用元组选择/设置多索引

In [12]: df = pd.DataFrame(randn(6, 3), index=arrays, columns=['A', 'B', 'C'])

In [13]: df
Out[13]: 
                  A         B         C
bar one 0 -0.694240  0.725163  0.131891
    two 1 -0.729186  0.244860  0.530870
baz one 2  0.757816  1.129989  0.893080
qux one 3 -2.275694  0.680023 -1.054816
    two 4  0.291889 -0.409024 -0.307302
bar one 5  1.697974 -1.828872 -1.004187

In [14]: df = df.sortlevel(0)

In [15]: df
Out[15]: 
                  A         B         C
bar one 0 -0.694240  0.725163  0.131891
        5  1.697974 -1.828872 -1.004187
    two 1 -0.729186  0.244860  0.530870
baz one 2  0.757816  1.129989  0.893080
qux one 3 -2.275694  0.680023 -1.054816
    two 4  0.291889 -0.409024 -0.307302

In [16]: df.loc[('bar','two'),'A'] = 9999

In [17]: df
Out[17]: 
                     A         B         C
bar one 0    -0.694240  0.725163  0.131891
        5     1.697974 -1.828872 -1.004187
    two 1  9999.000000  0.244860  0.530870
baz one 2     0.757816  1.129989  0.893080
qux one 3    -2.275694  0.680023 -1.054816
    two 4     0.291889 -0.409024 -0.307302

如果你指定完整的索引,你也可以不排序,例如

In [23]: df.loc[('bar','two',1),'A'] = 999

In [24]: df
Out[24]: 
                    A         B         C
bar one 0   -0.113216  0.878715 -0.183941
    two 1  999.000000 -1.405693  0.253388
baz one 2    0.441543  0.470768  1.155103
qux one 3   -0.008763  0.917800 -0.699279
    two 4    0.061586  0.537913  0.380175
bar one 5    0.857231  1.144246 -2.369694

检查排序深度

In [27]: df.index.lexsort_depth
Out[27]: 0

In [28]: df.sortlevel(0).index.lexsort_depth
Out[28]: 3

问题的最后一部分,分配一个列表(请注意,您必须有 与您尝试替换的元素数量相同),并且必须对其进行排序才能使其工作

In [12]: df.loc[('bar','one'),'A'] = [999,888]

In [13]: df
Out[13]: 
                    A         B         C
bar one 0  999.000000 -0.645641  0.369443
        5  888.000000 -0.990632 -0.577401
    two 1   -1.071410  2.308711  2.018476
baz one 2    1.211887  1.516925  0.064023
qux one 3   -0.862670 -0.770585 -0.843773
    two 4   -0.644855 -1.431962  0.232528

【讨论】:

所以,这都是关于排序的......好吧,我将来会使用它。谢谢你的伎俩! 是的,让它成为你的朋友:pandas.pydata.org/pandas-docs/dev/…

以上是关于从 MultiIndex DataFrame 为切片分配新值的主要内容,如果未能解决你的问题,请参考以下文章

Pandas DataFrame 图:从 MultiIndex 中为 secondary_y 指定列

使用 Multiindex 从 Pandas DataFrame 中选择数据

我需要从包含列表的字典中使用 MultiIndex 在 Pandas 中创建一个 DataFrame

将 MultiIndex DataFrame 格式从列排序到 Pandas 中的变量

如何从带有列表的嵌套字典构建 MultiIndex Pandas DataFrame

使用元组键从字典创建 MultiIndex pandas DataFrame