以km c#计算两个地理点的距离
Posted
技术标签:
【中文标题】以km c#计算两个地理点的距离【英文标题】:Calculate distance of two geo points in km c# 【发布时间】:2011-09-26 12:31:06 【问题描述】:我想计算两个地理点的距离。这些点以经度和纬度给出。
坐标是:
点 1:36.578581,-118.291994
第 2 点:36.23998,-116.83171
这里是一个网站来比较结果:
http://www.movable-type.co.uk/scripts/latlong.html
这里是我从这个链接中使用的代码: Calculate distance between two points in google maps V3
const double PIx = Math.PI;
const double RADIO = 6378.16;
/// <summary>
/// Convert degrees to Radians
/// </summary>
/// <param name="x">Degrees</param>
/// <returns>The equivalent in radians</returns>
public static double Radians(double x)
return x * PIx / 180;
/// <summary>
/// Calculate the distance between two places.
/// </summary>
/// <param name="lon1"></param>
/// <param name="lat1"></param>
/// <param name="lon2"></param>
/// <param name="lat2"></param>
/// <returns></returns>
public static double DistanceBetweenPlaces(double lon1, double lat1, double lon2, double lat2)
double R = 6371; // km
double dLat = Radians(lat2 - lat1);
double dLon = Radians(lon2 - lon1);
lat1 = Radians(lat1);
lat2 = Radians(lat2);
double a = Math.Sin(dLat / 2) * Math.Sin(dLat / 2) + Math.Sin(dLon / 2) * Math.Sin(dLon / 2) * Math.Cos(lat1) * Math.Cos(lat2);
double c = 2 * Math.Atan2(Math.Sqrt(a), Math.Sqrt(1 - a));
double d = R * c;
return d;
Console.WriteLine(DistanceAlgorithm.DistanceBetweenPlaces(36.578581, -118.291994, 36.23998, -116.83171));
问题是我得到了两个不同的结果。
我的成绩:163,307 公里
网站结果:136公里
有什么建议吗???
托蒂
【问题讨论】:
你做了一个有点狡猾的假设,即地球的赤道半径和极地半径是相同的。 【参考方案1】:我认为您正在交换纬度和经度值。尝试更正这些或更改参数顺序。
【讨论】:
【参考方案2】:我使用Wikipedia 中的公式并将其放入 lambda 函数中:
Func<double, double, double, double, double> CalcDistance = (lat1, lon1, lat2, lon2) =>
Func<double, double> Radians = (angle) =>
return angle * (180.0 / Math.PI);
;
const double radius = 6371;
double delataSigma = Math.Acos(Math.Sin(Radians(lat1)) * Math.Sin(Radians(lat2)) +
Math.Cos(Radians(lat1)) * Math.Cos(Radians(lat2)) * Math.Cos(Math.Abs(Radians(lon2) - Radians(lon1))));
double distance = radius * delataSigma;
return distance;
;
【讨论】:
【参考方案3】:在我几年前发表的文章中(链接:http://www.codeproject.com/Articles/469500/Edumatter-School-Math-Calculators-and-Equation-Sol)我描述了 3 个有用的Functions
来计算 2 个地理点之间的距离(换句话说,地球上 2 个之间的大圆(正交)距离地理点),在准确性/性能方面有所不同:
// Haversine formula to calculate great-circle distance between two points on Earth
private const double _radiusEarthMiles = 3959;
private const double _radiusEarthKM = 6371;
private const double _m2km = 1.60934;
private const double _toRad = Math.PI / 180;
/// <summary>
/// Haversine formula to calculate
/// great-circle (orthodromic) distance on Earth
/// High Accuracy, Medium speed
/// </summary>
/// <param name="Lat1">double: 1st point Latitude</param>
/// <param name="Lon1">double: 1st point Longitude</param>
/// <param name="Lat2">double: 2nd point Latitude</param>
/// <param name="Lon2">double: 2nd point Longitude</param>
/// <returns>double: distance in miles</returns>
public static double DistanceMilesHaversine(double Lat1,
double Lon1,
double Lat2,
double Lon2)
try
double _radLat1 = Lat1 * _toRad;
double _radLat2 = Lat2 * _toRad;
double _dLatHalf = (_radLat2 - _radLat1) / 2;
double _dLonHalf = Math.PI * (Lon2 - Lon1) / 360;
// intermediate result
double _a = Math.Sin(_dLatHalf);
_a *= _a;
// intermediate result
double _b = Math.Sin(_dLonHalf);
_b *= _b * Math.Cos(_radLat1) * Math.Cos(_radLat2);
// central angle, aka arc segment angular distance
double _centralAngle = 2 * Math.Atan2(Math.Sqrt(_a + _b), Math.Sqrt(1 - _a - _b));
// great-circle (orthodromic) distance on Earth between 2 points
return _radiusEarthMiles * _centralAngle;
catch throw;
// Spherical law of cosines formula to calculate great-circle distance between two points on Earth
/// <summary>
/// Spherical Law of Cosines formula to calculate
/// great-circle (orthodromic) distance on Earth;
/// High Accuracy, Medium speed
/// http://en.wikipedia.org/wiki/Spherical_law_of_cosines
/// </summary>
/// <param name="Lat1">double: 1st point Latitude</param>
/// <param name="Lon1">double: 1st point Longitude</param>
/// <param name="Lat2">double: 2nd point Latitude</param>
/// <param name="Lon2">double: 2nd point Longitude</param>
/// <returns>double: distance in miles</returns>
public static double DistanceMilesSLC( double Lat1,
double Lon1,
double Lat2,
double Lon2)
try
double _radLat1 = Lat1 * _toRad;
double _radLat2 = Lat2 * _toRad;
double _radLon1 = Lon1 * _toRad;
double _radLon2 = Lon2 * _toRad;
// central angle, aka arc segment angular distance
double _centralAngle = Math.Acos(Math.Sin(_radLat1) * Math.Sin(_radLat2) +
Math.Cos(_radLat1) * Math.Cos(_radLat2) * Math.Cos(_radLon2 - _radLon1));
// great-circle (orthodromic) distance on Earth between 2 points
return _radiusEarthMiles * _centralAngle;
catch throw;
// Great-circle distance calculation using Spherical Earth projection formula**
/// <summary>
/// Spherical Earth projection to a plane formula (using Pythagorean Theorem)
/// to calculate great-circle (orthodromic) distance on Earth.
/// http://en.wikipedia.org/wiki/Geographical_distance
/// central angle =
/// Sqrt((_radLat2 - _radLat1)^2 + (Cos((_radLat1 + _radLat2)/2) * (Lon2 - Lon1))^2)
/// Medium Accuracy, Fast,
/// relative error less than 0.1% in search area smaller than 250 miles
/// </summary>
/// <param name="Lat1">double: 1st point Latitude</param>
/// <param name="Lon1">double: 1st point Longitude</param>
/// <param name="Lat2">double: 2nd point Latitude</param>
/// <param name="Lon2">double: 2nd point Longitude</param>
/// <returns>double: distance in miles</returns>
public static double DistanceMilesSEP(double Lat1,
double Lon1,
double Lat2,
double Lon2)
try
double _radLat1 = Lat1 * _toRad;
double _radLat2 = Lat2 * _toRad;
double _dLat = (_radLat2 - _radLat1);
double _dLon = (Lon2 - Lon1) * _toRad;
double _a = (_dLon) * Math.Cos((_radLat1 + _radLat2) / 2);
// central angle, aka arc segment angular distance
double _centralAngle = Math.Sqrt(_a * _a + _dLat * _dLat);
// great-circle (orthodromic) distance on Earth between 2 points
return _radiusEarthMiles * _centralAngle;
catch throw;
函数以英里为单位返回结果;以公里为单位的距离乘以 1.60934(请参阅private const double _m2km = 1.60934
)。
与样本相关:求point1(36.578581,-118.291994)和point2(36.23998,-116.83171)的距离,上述三个Function产生如下结果(km):
136.00206654936932
136.00206654937023
136.00374497149613
计算器(链接:http://www.movable-type.co.uk/scripts/latlong.html)给出的结果是:136.0
希望这可能会有所帮助。最好的问候,
【讨论】:
【参考方案4】:我刚刚尝试在 GeoDataSource 上编写代码,并且效果非常好: http://www.geodatasource.com/developers/c-sharp
【讨论】:
【参考方案5】:由于您使用的是框架 4.0,我建议您使用 GeoCoordinate
类。
// using System.Device.Location;
GeoCoordinate c1 = new GeoCoordinate(36.578581, -118.291994);
GeoCoordinate c2 = new GeoCoordinate(36.23998, -116.83171);
double distanceInKm = c1.GetDistanceTo(c2) / 1000;
// Your result is: 136,111419742602
您必须添加对 System.Device.dll 的引用。
【讨论】:
【参考方案6】:您的公式几乎是正确的,但是您必须将参数换成经度和纬度
Console.WriteLine(DistanceAlgorithm.DistanceBetweenPlaces(-118.291994, 36.578581, -116.83171, 36.23998)); // = 136 km
我使用的是简化公式:
// cos(d) = sin(φА)·sin(φB) + cos(φА)·cos(φB)·cos(λА − λB),
// where φА, φB are latitudes and λА, λB are longitudes
// Distance = d * R
public static double DistanceBetweenPlaces(double lon1, double lat1, double lon2, double lat2)
double R = 6371; // km
double sLat1 = Math.Sin(Radians(lat1));
double sLat2 = Math.Sin(Radians(lat2));
double cLat1 = Math.Cos(Radians(lat1));
double cLat2 = Math.Cos(Radians(lat2));
double cLon = Math.Cos(Radians(lon1) - Radians(lon2));
double cosD = sLat1*sLat2 + cLat1*cLat2*cLon;
double d = Math.Acos(cosD);
double dist = R * d;
return dist;
测试:
(赤道距离):经度 0、100;纬度 = 0,0; DistanceBetweenPlaces(0, 0, 100, 0) = 11119.5 公里
(北极距离):经度 0、100;纬度 = 90,90; DistanceBetweenPlaces(0, 90, 100, 90) = 0 公里
经度:-118.291994,-116.83171;纬度:36.578581、36.23998 = 135.6 公里
经度:36.578581、36.23998;纬度:-118.291994,-116.83171 = 163.2 公里
最好的问候
附:在web site,您用于结果比较,对于每个点,第一个文本框是纬度,第二个是经度
【讨论】:
不,这只是一个检查球面上两个点之间距离的数学公式。 wgs84 需要更复杂的椭球计算【参考方案7】:试试这个...我以前用过这个是应用程序——它非常准确。请原谅我没有对最初发表这篇文章的聪明人给予应有的赞扬,我将它从 java 转换为 C#:
namespace Sample.Geography
using System;
public class GeodesicDistance
private static double DegsToRadians(double degrees)
return (0.017453292519943295 * degrees);
public static double? GetDistance(double lat1, double lon1, double lat2, double lon2)
long num = 0x615299L;
double num2 = 6356752.3142;
double num3 = 0.0033528106647474805;
double num4 = DegsToRadians(lon2 - lon1);
double a = Math.Atan((1 - num3) * Math.Tan(DegsToRadians(lat1)));
double num6 = Math.Atan((1 - num3) * Math.Tan(DegsToRadians(lat2)));
double num7 = Math.Sin(a);
double num8 = Math.Sin(num6);
double num9 = Math.Cos(a);
double num10 = Math.Cos(num6);
double num11 = num4;
double num12 = 6.2831853071795862;
int num13 = 20;
double y = 0;
double x = 0;
double num18 = 0;
double num20 = 0;
double num22 = 0;
while ((Math.Abs((double) (num11 - num12)) > 1E-12) && (--num13 > 0))
double num14 = Math.Sin(num11);
double num15 = Math.Cos(num11);
y = Math.Sqrt(((num10 * num14) * (num10 * num14)) + (((num9 * num8) - ((num7 * num10) * num15)) * ((num9 * num8) - ((num7 * num10) * num15))));
if (y == 0)
return 0;
x = (num7 * num8) + ((num9 * num10) * num15);
num18 = Math.Atan2(y, x);
double num19 = ((num9 * num10) * num14) / y;
num20 = 1 - (num19 * num19);
if (num20 == 0)
num22 = 0;
else
num22 = x - (((2 * num7) * num8) / num20);
double num21 = ((num3 / 16) * num20) * (4 + (num3 * (4 - (3 * num20))));
num12 = num11;
num11 = num4 + ((((1 - num21) * num3) * num19) * (num18 + ((num21 * y) * (num22 + ((num21 * x) * (-1 + ((2 * num22) * num22)))))));
if (num13 == 0)
return null;
double num23 = (num20 * ((num * num) - (num2 * num2))) / (num2 * num2);
double num24 = 1 + ((num23 / 16384) * (4096 + (num23 * (-768 + (num23 * (320 - (175 * num23)))))));
double num25 = (num23 / 1024) * (256 + (num23 * (-128 + (num23 * (74 - (47 * num23))))));
double num26 = (num25 * y) * (num22 + ((num25 / 4) * ((x * (-1 + ((2 * num22) * num22))) - ((((num25 / 6) * num22) * (-3 + ((4 * y) * y))) * (-3 + ((4 * num22) * num22))))));
return new double?((num2 * num24) * (num18 - num26));
【讨论】:
哇!!已经很复杂的代码被绝对无意义的变量名弄得更加乱七八糟。我要告诉鲍伯叔叔!!! :o) 我同意,num1 到 num22 不是很好的变量命名 :-) 但感谢您的帮助! 有时最好使用数学代码,因为它会从某些生成器中掉出来,因为如果出现拼写错误,“修复变量名”会导致细微的错误。 @Morten 谁是UncleBob? @TheRealChx101 鲍勃叔叔是罗伯特·马丁,“清洁代码”的作者以上是关于以km c#计算两个地理点的距离的主要内容,如果未能解决你的问题,请参考以下文章