Google OR Tools CVRP - 车辆满足的需求超出了它的处理能力

Posted

技术标签:

【中文标题】Google OR Tools CVRP - 车辆满足的需求超出了它的处理能力【英文标题】:Google OR Tools CVRP - Vehicle is satisfying demands more than it can handle 【发布时间】:2021-07-16 16:02:25 【问题描述】:

我正在尝试使用 Google OR 工具解决 CVRP。 下面是我使用 pandas 清理所有数据后使用的表格。 链接:https://i.stack.imgur.com/W0AXa.png(出于隐私原因,隐藏了客户名称和坐标)

我面临的主要问题是车辆容量限制被忽略了。 该算法在小规模网络(5 到 10 个客户)上运行良好。但是在这个有 48 位客户的示例中,我遇到了这个问题。

代码:

    from ortools.constraint_solver import routing_enums_pb2
    from ortools.constraint_solver import pywrapcp
    import scipy
 
    #Distance Matrix
    from scipy.spatial.distance import cdist
    df_array = df_Demand2[["GeoCodeX", "GeoCodeY"]].to_numpy()
    dist_mat = cdist(df_array, df_array)
    
    #Google Code
    def create_data_model():
        """Stores the data for the problem."""
        data = 
        data['distance_matrix'] = dist_mat
        
        data['demands'] = df_Demand2['Ton'].tolist()
        data['vehicle_capacities'] = df_Veh['Payload'].tolist() 
        #vehicle capacities are : [4, 4, 4, 4, 4, 4, 6, 6, 6, 7, 7, 7, 7, 9, 9, 9, 9, 9, 10, 10, 10]
        data['num_vehicles'] = len(df_Veh['Payload']) #equal to 21
        data['depot'] = 0
        return data

    def print_solution(data, manager, routing, assignment):
        """Prints assignment on console."""
    print(f'Objective: assignment.ObjectiveValue()')
    # Display dropped nodes.
    dropped_nodes = 'Dropped nodes:'
    for node in range(routing.Size()):
        if routing.IsStart(node) or routing.IsEnd(node):
            continue
        if assignment.Value(routing.NextVar(node)) == node:
            dropped_nodes += ' '.format(manager.IndexToNode(node))
    print(dropped_nodes)

    # Display routes
    total_distance = 0
    total_load = 0
    for vehicle_id in range(data['num_vehicles']):
        index = routing.Start(vehicle_id)
        plan_output = 'Route for vehicle :\n'.format(vehicle_id)
        route_distance = 0
        route_load = 0
        while not routing.IsEnd(index):
            node_index = manager.IndexToNode(index)
            route_load += data['demands'][node_index]
            plan_output += ' 0 Load(1) -> '.format(node_index, route_load)
            previous_index = index
            index = assignment.Value(routing.NextVar(index))
            route_distance += routing.GetArcCostForVehicle(
                previous_index, index, vehicle_id)
        plan_output += ' 0 Load(1)\n'.format(manager.IndexToNode(index),
                                                 route_load)
        plan_output += 'Distance of the route: m\n'.format(route_distance)
        plan_output += 'Load of the route: \n'.format(route_load)
        print(plan_output)
        total_distance += route_distance
        total_load += route_load
    print('Total Distance of all routes: m'.format(total_distance))
    print('Total Load of all routes: '.format(total_load))

    def main():
        """Solve the CVRP problem."""
        # Instantiate the data problem.
        data = create_data_model()

        # Create the routing index manager.
        manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']),
                                           data['num_vehicles'], data['depot'])

        # Create Routing Model.
        routing = pywrapcp.RoutingModel(manager)


        # Create and register a transit callback.
        def distance_callback(from_index, to_index):
            """Returns the distance between the two nodes."""
            # Convert from routing variable Index to distance matrix NodeIndex.
            from_node = manager.IndexToNode(from_index)
            to_node = manager.IndexToNode(to_index)
            return data['distance_matrix'][from_node][to_node]
        transit_callback_index =routing.RegisterTransitCallback(distance_callback)

        # Define cost of each arc.
        routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

        # Add Capacity constraint.
        def demand_callback(from_index):
            """Returns the demand of the node."""
            # Convert from routing variable Index to demands NodeIndex.
            from_node = manager.IndexToNode(from_index)
            return data['demands'][from_node]

        demand_callback_index = routing.RegisterUnaryTransitCallback(demand_callback)
        routing.AddDimensionWithVehicleCapacity(demand_callback_index,
        0,  # null capacity slack
        data['vehicle_capacities'],  # vehicle maximum capacities
        True,  # start cumul to zero
        'Capacity')
        # Allow to drop nodes.
        penalty = 0
        for node in range(1, len(data['distance_matrix'])):
            routing.AddDisjunction([manager.NodeToIndex(node)], penalty)

        # Setting first solution heuristic.
        search_parameters = pywrapcp.DefaultRoutingSearchParameters()
        search_parameters.first_solution_strategy = (routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)
        search_parameters.local_search_metaheuristic = (routing_enums_pb2.LocalSearchMetaheuristic.GUIDED_LOCAL_SEARCH)
        search_parameters.time_limit.FromSeconds(1)

        # Solve the problem.
        assignment = routing.SolveWithParameters(search_parameters)

        # Print solution on console.
        if assignment:
            print_solution(data, manager, routing, assignment)
    if __name__ == '__main__':
        main()

输出:

    Route for vehicle 15:
    0 Load(0.0) ->  14 Load(5.325117900000052) ->  2 Load(6.367904300000052) ->  1 
    Load(9.201462300000053) ->  0 Load(9.201462300000053)
    Distance of the route: 0m
    Load of the route: 9.201462300000053

    Route for vehicle 16:
    0 Load(0.0) ->  16 Load(9.0) ->  0 Load(9.0)
    Distance of the route: 0m
    Load of the route: 9.0

    Route for vehicle 17:
    0 Load(0.0) ->  21 Load(6.375019300000001) ->  9 Load(8.449955800000001) ->  6 Load(9.7910356) 
    ->  0 Load(9.7910356)
    Distance of the route: 0m
    Load of the route: 9.7910356

    Route for vehicle 18:
    0 Load(0.0) ->  23 Load(1.097403700000001) ->  22 Load(6.269400900000001) ->  19 
    Load(8.8132836) ->  15 Load(9.8132836) ->  11 Load(11.433122899999999) ->  0 
    Load(11.433122899999999)
    Distance of the route: 0m
    Load of the route: 11.433122899999999

    Route for vehicle 19:
    0 Load(0.0) ->  35 Load(5.312536499999981) ->  33 Load(6.44325249999998) ->  32 
    Load(9.338866299999982) ->  28 Load(12.298517599999983) ->  0 Load(12.298517599999983)
    Distance of the route: 0m
    Load of the route: 12.298517599999983

    Route for vehicle 20:
    0 Load(0.0) ->  38 Load(0.32752620000000016) ->  37 Load(0.6226590000000002) ->  36 
    Load(10.622659) ->  34 Load(11.2064377) ->  31 Load(11.4892377) ->  30 Load(11.779161) ->  29 
    Load(12.7502624) ->  27 Load(12.900136700000001) ->  26 Load(12.918321200000001) ->  25 
    Load(13.271298000000002) ->  24 Load(13.3594985) ->  20 Load(14.348135800000001) ->  18 
    Load(15.057466400000003) ->  13 Load(15.591705900000003) ->  12 Load(15.901503200000002) ->  
    10 Load(16.366829600000003) ->  8 Load(16.824547900000002) ->  7 Load(17.061237800000004) ->  
    5 Load(17.190268900000003) ->  4 Load(17.355464500000004) ->  3 Load(17.484708400000002) ->  0 
    Load(17.484708400000002)
    Distance of the route: 0m
    Load of the route: 17.484708400000002

15 号和 17 号车辆的载重为 9 吨。车辆 18,19 和 20 的容量为 10 吨。 我不明白为什么路线的负载会超过车辆的容量。

有什么建议吗?

【问题讨论】:

【参考方案1】:

Solver 在传输回调中仅支持整数 (ed std::int64_t)。

【讨论】:

以上是关于Google OR Tools CVRP - 车辆满足的需求超出了它的处理能力的主要内容,如果未能解决你的问题,请参考以下文章

Google OR-Tools:具有多种货物类型和容量的 CVRP

Ortools CVRP 重用旧车

改进差分进化算法求解容量受限的车辆路径(CVRP)问题MATLAB代码

CVRP基于matlab遗传算法求解带容量的车辆路径规划问题含Matlab源码 1280期

CVRP基于matlab人工鱼群算法求解带容量的车辆路径规划问题含Matlab源码 1486期

VRP问题基于节约算法CW求解带容量的车辆路径规划问题(CVRP)