令牌索引序列长度大于此模型的指定最大序列长度 (651 > 512),具有拥抱面部情感分类器
Posted
技术标签:
【中文标题】令牌索引序列长度大于此模型的指定最大序列长度 (651 > 512),具有拥抱面部情感分类器【英文标题】:Token indices sequence length is longer than the specified maximum sequence length for this model (651 > 512) with Hugging face sentiment classifier 【发布时间】:2021-07-01 09:54:46 【问题描述】:我正在尝试借助拥抱面部情绪分析预训练模型来获取 cmets 的情绪。它返回类似Token indices sequence length is longer than the specified maximum sequence length for this model (651 > 512) with Hugging face sentiment classifier
的错误。
下面我附上代码请看
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
import transformers
import pandas as pd
model = AutoModelForSequenceClassification.from_pretrained('/content/drive/MyDrive/Huggingface-Sentiment-Pipeline')
token = AutoTokenizer.from_pretrained('/content/drive/MyDrive/Huggingface-Sentiment-Pipeline')
classifier = pipeline(task='sentiment-analysis', model=model, tokenizer=token)
data = pd.read_csv('/content/drive/MyDrive/DisneylandReviews.csv', encoding='latin-1')
data.head()
输出是
Review
0 If you've ever been to Disneyland anywhere you...
1 Its been a while since d last time we visit HK...
2 Thanks God it wasn t too hot or too humid wh...
3 HK Disneyland is a great compact park. Unfortu...
4 the location is not in the city, took around 1...
紧随其后
classifier("My name is mark")
输出是
['label': 'POSITIVE', 'score': 0.9953688383102417]
后跟代码
basic_sentiment = [i['label'] for i in value if 'label' in i]
basic_sentiment
输出是
['POSITIVE']
将总行数追加到空列表中
text = []
for index, row in data.iterrows():
text.append(row['Review'])
我正在尝试获取所有行的情绪
sent = []
for i in range(len(data)):
sentiment = classifier(data.iloc[i,0])
sent.append(sentiment)
错误是:
Token indices sequence length is longer than the specified maximum sequence length for this model (651 > 512). Running this sequence through the model will result in indexing errors
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-19-4bb136563e7c> in <module>()
2
3 for i in range(len(data)):
----> 4 sentiment = classifier(data.iloc[i,0])
5 sent.append(sentiment)
11 frames
/usr/local/lib/python3.7/dist-packages/torch/nn/functional.py in embedding(input, weight, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse)
1914 # remove once script supports set_grad_enabled
1915 _no_grad_embedding_renorm_(weight, input, max_norm, norm_type)
-> 1916 return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
1917
1918
IndexError: index out of range in self
【问题讨论】:
【参考方案1】:数据框Review
列中的某些句子太长。当这些句子被转换为标记并在模型中发送时,它们超出了model 的512 seq_length
限制,sentiment-analysis
任务中使用的模型的嵌入在512
标记嵌入上进行了训练。
要解决此问题,您可以过滤掉长句子并只保留较小的句子(令牌长度
或者你可以用truncating = True
截断句子
sentiment = classifier(data.iloc[i,0], truncation=True)
【讨论】:
以上是关于令牌索引序列长度大于此模型的指定最大序列长度 (651 > 512),具有拥抱面部情感分类器的主要内容,如果未能解决你的问题,请参考以下文章