如何提高机器学习的分类精度
Posted
技术标签:
【中文标题】如何提高机器学习的分类精度【英文标题】:How to improve classification accuracy for machine learning 【发布时间】:2017-05-17 18:10:38 【问题描述】:我使用了极限学习机进行分类,发现我的分类准确率只有 70+%,这导致我使用集成方法通过创建更多的分类模型和测试数据将根据大部分的分类模型的分类。然而,这种方法只提高了分类精度很小的幅度。请问还有哪些其他方法可以用来提高二维线性不可分数据集的分类精度?
【问题讨论】:
【参考方案1】:有时,提高模型性能可能具有挑战性。我敢肯定,如果你发现自己陷入了类似的境地,你们中的很多人都会同意我的看法。你尝试所有你学过的策略和算法。然而,您未能提高模型的准确性。你感到无助和卡住。而且,这也是 90% 的数据科学家放弃的地方。现在让我们深入挖掘。现在我们将检查提高模型准确性的行之有效的方法:
-
添加更多数据
处理缺失值和异常值
特征工程
功能选择
多种算法
算法调优
集成方法
交叉验证
如果您觉得缺少信息,那么您应该学习此链接,希望可以提供帮助:https://www.analyticsvidhya.com/blog/2015/12/improve-machine-learning-results/ 对不起,如果我提供的信息不太令人满意
【讨论】:
【参考方案2】:您的问题非常广泛......如果不知道您正在治疗的真正问题,就无法正确地帮助您。但是,一般来说,提高分类准确性的一些方法是:
1 - 交叉验证:将您的训练数据集分成几组,始终分开一组进行预测,并在每次执行中更改组。然后你就会知道哪些数据更适合训练更准确的模型。
2 - 交叉数据集:与交叉验证相同,但使用不同的数据集。
3 - 调整您的模型:它基本上会更改您用于训练分类模型的参数(IDK 您正在使用哪种分类算法,因此很难提供更多帮助)。
4 - 改进或使用(如果您不使用)标准化过程:发现哪些技术(更改几何形状、颜色等)将为您提供更简洁的数据以供您在训练中使用。
5 - 更多地了解您正在处理的问题...尝试实施其他方法来解决相同的问题。总是至少有不止一种方法可以解决同一个问题。你可能没有使用最好的方法。
【讨论】:
您好,感谢您的回复。但我确实提到了我使用的算法,极限学习机。我相信交叉验证是 k 折交叉验证,以确定我使用的神经元数量是我以另一种方式所做的最佳选择。此外,如果有帮助,我已经对数据进行了标准化。同样正如我的问题中提到的,我想知道其他可用于提高二维线性不可分数据集分类精度的方法(只有 2 个参数可将实例分类)以上是关于如何提高机器学习的分类精度的主要内容,如果未能解决你的问题,请参考以下文章