如何从 P、Q 和 E 计算 RSA 加密的 D
Posted
技术标签:
【中文标题】如何从 P、Q 和 E 计算 RSA 加密的 D【英文标题】:How to calculate D for RSA encryption from P,Q and E 【发布时间】:2013-01-09 05:51:59 【问题描述】:我正在尝试使用 P
、Q
和 E
(Dp
、Dq
和 (p
-1
@98765432@ 来查找 D
也)。
根据this answer 和this answer 并使用以下方法更新this question 我应该得到D
。
为了测试这一点,我生成了密钥对并尝试从现有的组件中计算组件并将结果与原始组件进行比较。除了D
,所有结果都很好。我从上面的答案中复制的计算有问题。
如果有人能告诉我我做错了什么,那就太好了。
测试代码
using System;
using System.Numerics;
using System.Security.Cryptography;
using System.Text;
class Program
static RSAParameters key = new RSAParameters()
P = new byte[]
0xDE, 0xA6, 0x35, 0x0B, 0x0A, 0xA5, 0xD7, 0xA0, 0x5C, 0x49, 0xEA, 0xD1, 0x3F, 0xA6, 0xF5, 0x12,
0x19, 0x06, 0x25, 0x8A, 0xD9, 0xA7, 0x07, 0xE7, 0x0D, 0x8A, 0x7C, 0xB1, 0xD4, 0x81, 0x64, 0xFD,
0x04, 0xEC, 0x47, 0x33, 0x42, 0x0B, 0x22, 0xF2, 0x60, 0xBB, 0x75, 0x62, 0x53, 0x3E, 0x1A, 0x97,
0x9D, 0xEF, 0x25, 0xA7, 0xE5, 0x24, 0x3A, 0x30, 0x36, 0xA5, 0xF9, 0x8A, 0xF5, 0xFF, 0x1D, 0x1B
,
Q = new byte[]
0xBE, 0xB9, 0x60, 0x12, 0x05, 0xB1, 0x61, 0xD9, 0x22, 0xD8, 0x84, 0x6E, 0x9A, 0x7B, 0xD1, 0x9B,
0x17, 0xA5, 0xDD, 0x02, 0x5E, 0x9D, 0xD8, 0x24, 0x06, 0x1B, 0xF3, 0xD8, 0x2F, 0x79, 0xFE, 0x78,
0x74, 0x3D, 0xC4, 0xE6, 0x17, 0xD2, 0xB7, 0x68, 0x78, 0x6F, 0x53, 0xE0, 0x38, 0x00, 0x86, 0xFB,
0x20, 0x2A, 0x1B, 0xBD, 0x91, 0x76, 0x3E, 0x33, 0x85, 0x9A, 0x31, 0xE6, 0x88, 0x60, 0x91, 0x81
,
DP = new byte[]
0xAC, 0x28, 0x92, 0x6D, 0x46, 0x3F, 0x74, 0x1A, 0xA0, 0x21, 0xDB, 0xBB, 0x0E, 0xDF, 0xD7, 0x31,
0xB6, 0x3D, 0xC5, 0x7B, 0xB6, 0xCE, 0x6B, 0xD2, 0xE1, 0xEA, 0x8A, 0x7E, 0xAA, 0xD5, 0x9E, 0xB3,
0xF2, 0x41, 0x8C, 0xD0, 0x7A, 0xA9, 0xC7, 0xCC, 0xE8, 0xB5, 0x2A, 0x8F, 0xEB, 0xD3, 0xE2, 0x96,
0x07, 0xDD, 0xEA, 0x1D, 0x07, 0x96, 0x5A, 0x93, 0xFB, 0x3D, 0x9D, 0x56, 0x30, 0xDE, 0xA1, 0xAF
,
DQ = new byte[]
0xA6, 0x9C, 0x44, 0x1B, 0x9A, 0x53, 0x89, 0xD9, 0xE8, 0xC1, 0xE2, 0x76, 0xC8, 0x87, 0x6F, 0xE5,
0x1F, 0x74, 0x6A, 0xAC, 0x5E, 0x41, 0x5F, 0x86, 0xA0, 0xBB, 0x9C, 0x79, 0xF7, 0x87, 0x87, 0xD0,
0x6C, 0x23, 0x65, 0xB5, 0x67, 0x8C, 0x51, 0x62, 0x77, 0x0B, 0x31, 0xE7, 0x86, 0xA4, 0x97, 0x46,
0x1B, 0xA4, 0x0D, 0x55, 0xBE, 0x13, 0xE0, 0x64, 0x9B, 0xCA, 0xC6, 0xDA, 0xCF, 0xBA, 0x24, 0x81
,
InverseQ = new byte[]
0x02, 0x42, 0x90, 0xAE, 0xFF, 0xFE, 0xB6, 0xCB, 0x53, 0xFF, 0x96, 0x17, 0xC6, 0xE4, 0x3F, 0xE6,
0xC7, 0xBC, 0xB2, 0xEB, 0x53, 0xA9, 0x47, 0xEE, 0x10, 0x36, 0x98, 0xEF, 0xA8, 0x3E, 0x9C, 0xF7,
0xF9, 0xCF, 0x24, 0xE5, 0xD7, 0x9A, 0xAF, 0x09, 0xCF, 0x28, 0xAA, 0x5D, 0x2A, 0xB7, 0x27, 0x73,
0x47, 0x2D, 0x54, 0x54, 0x61, 0xC5, 0xCE, 0x3E, 0xA4, 0x91, 0xF6, 0x9D, 0xF4, 0x65, 0x08, 0xDD
,
Exponent = new byte[]
0x00, 0x01, 0x00, 0x01,
,
Modulus = new byte[]
0xA5, 0xE0, 0x95, 0x08, 0x87, 0x69, 0x2B, 0xB4, 0x7F, 0x08, 0xFB, 0x4F, 0x66, 0x85, 0xD9, 0x95,
0x53, 0x0F, 0x7C, 0x99, 0x95, 0x16, 0xF4, 0x0D, 0xAD, 0x9E, 0x31, 0xD8, 0x20, 0xF4, 0x88, 0x63,
0xAE, 0x51, 0x04, 0xC2, 0xE9, 0x92, 0x3C, 0x1C, 0x90, 0xF8, 0xF4, 0x38, 0x6A, 0x86, 0xFD, 0x8F,
0xDE, 0x85, 0x22, 0xDD, 0xE8, 0x7E, 0x8D, 0xF2, 0xC5, 0xC9, 0x4E, 0x71, 0x2B, 0x56, 0x25, 0x1A,
0xEA, 0x66, 0x15, 0x19, 0x63, 0x70, 0x53, 0x79, 0xDF, 0x38, 0x49, 0x30, 0x74, 0x45, 0xBE, 0xA3,
0x28, 0x0D, 0x0E, 0x7A, 0x7D, 0xB6, 0x8B, 0xCA, 0x09, 0x56, 0x21, 0xE7, 0x98, 0x3E, 0x4B, 0x8B,
0xD0, 0x31, 0x27, 0x8E, 0x6F, 0x10, 0xA6, 0x6C, 0x1C, 0x48, 0xB5, 0x5E, 0x89, 0x7B, 0x74, 0x74,
0xB2, 0x57, 0x72, 0x6D, 0x18, 0xEB, 0xF3, 0xF5, 0x53, 0xCA, 0x8C, 0xBE, 0xB7, 0x29, 0xF5, 0x9B
,
D = new byte[]
0x9F, 0x86, 0xE1, 0x4D, 0x96, 0x8C, 0xFA, 0xCF, 0x57, 0xED, 0x17, 0x64, 0x41, 0x41, 0x31, 0x04,
0x7F, 0x21, 0x41, 0xBF, 0xA2, 0xB6, 0xB4, 0x78, 0x03, 0x25, 0x44, 0xE2, 0x8A, 0xAF, 0x22, 0x0C,
0x5B, 0xB4, 0xE7, 0x53, 0x5C, 0xB6, 0x9A, 0xC1, 0x0E, 0x5B, 0x9E, 0xE4, 0x32, 0xEF, 0x28, 0x24,
0x98, 0xE8, 0x89, 0xA3, 0xC8, 0xD9, 0x0D, 0x43, 0x12, 0x1C, 0x8C, 0x28, 0x22, 0x79, 0x72, 0xAC,
0x66, 0x7B, 0x7D, 0xD2, 0xF9, 0x48, 0x06, 0xCD, 0x9D, 0x9A, 0xE6, 0x42, 0x92, 0xBA, 0x56, 0xA6,
0x63, 0x07, 0x1E, 0x25, 0x4E, 0xC8, 0x07, 0x58, 0x5B, 0x88, 0x60, 0x97, 0x92, 0xE2, 0xD5, 0xB9,
0xC6, 0x70, 0xBB, 0x63, 0x5A, 0xC3, 0xC3, 0xA6, 0x46, 0x5A, 0x1C, 0x9C, 0xBF, 0x61, 0x57, 0x9E,
0x9E, 0xFA, 0xC0, 0xC4, 0x8A, 0xC2, 0xBA, 0x88, 0x46, 0xA9, 0x7A, 0xF2, 0x7D, 0x4F, 0x6C, 0x01
;
public static BigInteger FromBigEndian(byte[] p)
Array.Reverse(p);
if (p[p.Length - 1] > 127)
Array.Resize(ref p, p.Length + 1);
p[p.Length - 1] = 0;
return new BigInteger(p);
static void Main(string[] args)
using (RSACryptoServiceProvider rsa = new RSACryptoServiceProvider() PersistKeyInCsp = false )
rsa.ImportParameters(key);
Console.Write("Testing Encrypt/Decrypt ... ");
string message = "Testing Some Data to Encrypt";
byte[] buffer = Encoding.ASCII.GetBytes(message);
byte[] encoded = rsa.Encrypt(buffer, true);
byte[] decoded = rsa.Decrypt(encoded, true);
string message1 = ASCIIEncoding.ASCII.GetString(decoded);
if (message == message1)
Console.WriteLine("Ok :)");
else
Console.WriteLine("Bad Encryption :(");
Console.ReadKey();
return;
//Convert Key to BigIntegers
BigInteger P = FromBigEndian(key.P);
BigInteger Q = FromBigEndian(key.Q);
BigInteger DP = FromBigEndian(key.DP);
BigInteger DQ = FromBigEndian(key.DQ);
BigInteger InverseQ = FromBigEndian(key.InverseQ);
BigInteger E = FromBigEndian(key.Exponent);
BigInteger M = FromBigEndian(key.Modulus);
BigInteger D = FromBigEndian(key.D);
Console.WriteLine("Testing Numbers ... ");
BigInteger M1 = BigInteger.Multiply(P, Q); // M = P*Q
if (M1.CompareTo(M) == 0)
Console.WriteLine(" M Ok :)");
else
Console.WriteLine(" Bad M:(");
Console.ReadKey();
return;
BigInteger PMinus1 = BigInteger.Subtract(P, BigInteger.One); // M = P*Q
BigInteger DP1 = BigInteger.Remainder(D, PMinus1); // M = P*Q
if (DP1.CompareTo(DP) == 0)
Console.WriteLine(" DP Ok :)");
else
Console.WriteLine(" Bad DP :(");
Console.ReadKey();
return;
BigInteger QMinus1 = BigInteger.Subtract(Q, BigInteger.One); // M = P*Q
BigInteger DQ1 = BigInteger.Remainder(D, QMinus1); // M = P*Q
if (DQ1.CompareTo(DQ) == 0)
Console.WriteLine(" DQ Ok :)");
else
Console.WriteLine(" Bad DQ :(");
Console.ReadKey();
return;
BigInteger Phi = BigInteger.Multiply(PMinus1, QMinus1);
BigInteger PhiMinus1 = BigInteger.Subtract(Phi, BigInteger.One);
BigInteger D1 = BigInteger.ModPow(E, PhiMinus1, Phi);
if (D1.CompareTo(D) == 0)
Console.WriteLine(" D Ok :)");
else
Console.WriteLine(" Bad D :(");
Console.ReadKey();
return;
Console.ReadKey();
测试结果
Testing Encrypt/Decrypt ... Ok :)
Testing Numbers ...
M Ok :)
DP Ok :)
DQ Ok :)
Bad D :(
【问题讨论】:
【参考方案1】:首先您需要验证GCD(e, φ) = 1
,因为d
仅在该属性成立时才存在。然后计算我在my answer to "1/BigInteger in C#"中描述的modular multiplicative inverse of e
modulo phi
。
您的代码似乎假设 e^(φ(n)-1) mod φ(n)
是相反的,但这是不正确的。我认为正确的公式应该是e^(φ(φ(n))-1) mod φ(n)
,但使用起来很不方便,因为你只知道φ(n)
,而不知道φ(φ(n))
。
我建议通过将***伪代码移植到 C# 来使用扩展欧几里得算法。
附带说明: d
通常有多个等效值,因为您不需要 e*d mod φ(n)=1
而只需要 e*d mod λ(n)=1
其中 λ 是 Carmichael function 参见 @987654324 @
【讨论】:
代码...,我相信GCD(e, φ) =1
应该是有效的,因为这是一个生成的密钥,它可以用来加密和解密(C#.Net 使用 d 来解密)。我也尝试从 wiki 伪代码翻译,但我得到了不同的d
。根据你说的,如果我可以有多个d
,我不应该也可以用那个d
解密吗?
有多个d
,它们是等价的,也应该解密。
不幸的是我的数学不太好;)。我会尝试用我得到的 d 进行解密,如果成功了会告诉你。
您可以通过计算 e*d mod phi
并检查它是否等于 1 来验证您的 e mod phi
的模逆。如果不是,则您的 EED 实现已损坏/使用不正确。
这是我的错,因为我在之前的回答中弄错了。【参考方案2】:
扩展欧几里得算法可用于计算模逆,使用此链接:http://www.di-mgt.com.au/euclidean.html#extendedeuclidean 获取详细信息, 我在C#中测试了源代码如下,结果是匹配的,
public static BigInteger modinv(BigInteger u, BigInteger v)
BigInteger inv, u1, u3, v1, v3, t1, t3, q;
BigInteger iter;
/* Step X1. Initialise */
u1 = 1;
u3 = u;
v1 = 0;
v3 = v;
/* Remember odd/even iterations */
iter = 1;
/* Step X2. Loop while v3 != 0 */
while (v3 != 0)
/* Step X3. Divide and "Subtract" */
q = u3 / v3;
t3 = u3 % v3;
t1 = u1 + q * v1;
/* Swap */
u1 = v1; v1 = t1; u3 = v3; v3 = t3;
iter = -iter;
/* Make sure u3 = gcd(u,v) == 1 */
if (u3 != 1)
return 0; /* Error: No inverse exists */
/* Ensure a positive result */
if (iter < 0)
inv = v - u1;
else
inv = u1;
return inv;
【讨论】:
【参考方案3】:D 可以通过以下方式计算:
var qq = BigInteger.Multiply(totient, n);
var qw = BigInteger.Multiply(totient, qq);
BigInteger d = BigInteger.ModPow(e, (qw - 1), totient);
【讨论】:
【参考方案4】: Console.Write("Testing Encrypt/Decrypt using BigInteger ");
string message2 = "Testing Some Data to Encrypt";
byte[] buffer2 = Encoding.ASCII.GetBytes(message2);
BigInteger m = new BigInteger(buffer2);
BigInteger c = BigInteger.ModPow(m, E, M); //encrypt
BigInteger m2 = BigInteger.ModPow(c, D, M); //decrypt, m2 also equals m
byte[] decoded2 = m2.ToByteArray();
if (decoded2[0] == 0)
decoded2 = decoded2.Where(b => b != 0).ToArray();
string message3 = ASCIIEncoding.ASCII.GetString(decoded2);
if (message2 == message3)
Console.WriteLine("Ok :)");
else
Console.WriteLine("Bad Encryption :(");
Console.ReadKey();
return;
我用你的参数试过了,它有效,所以 E、D 和 M 必须有效。
【讨论】:
你到底检查了什么?我没有编码和解码的问题。阅读问题标题,我正在尝试从 P、Q 和 E 中找到 D 分量以上是关于如何从 P、Q 和 E 计算 RSA 加密的 D的主要内容,如果未能解决你的问题,请参考以下文章