预训练的 GloVe 矢量文件(例如 glove.6B.50d.txt)中的“unk”是啥?

Posted

技术标签:

【中文标题】预训练的 GloVe 矢量文件(例如 glove.6B.50d.txt)中的“unk”是啥?【英文标题】:What is "unk" in the pretrained GloVe vector files (e.g. glove.6B.50d.txt)?预训练的 GloVe 矢量文件(例如 glove.6B.50d.txt)中的“unk”是什么? 【发布时间】:2018-08-20 18:01:47 【问题描述】:

我在from https://nlp.stanford.edu/projects/glove/ 下载的手套矢量文件 glove.6B.50d.txt 中找到了“unk”标记。其值如下:

unk -0.79149 0.86617 0.11998 0.00092287 0.2776 -0.49185 0.50195 0.00060792 -0.25845 0.17865 0.2535 0.76572 0.50664 0.4025 -0.0021388 -0.28397 -0.50324 0.30449 0.51779 0.01509 -0.35031 -1.1278 0.33253 -0.3525 0.041326 1.0863 0.03391 0.33564 0.49745 -0.070131 -1.2192 -0.48512 -0.038512 -0.13554 -0.1638 0.52321 -0.31318 -0.1655 0.11909 -0.15115 -0.15621 -0.62655 -0.62336 -0.4215 0.41873 -0.92472 1.1049 -0.29996 -0.0063003 0.3954

它是用于未知单词的标记还是某种缩写?

【问题讨论】:

【参考方案1】:

预训练的 GloVe 文件中的 unk 令牌不是未知令牌!

见google groups thread Jeffrey Pennington(GloVe 的作者)写道:

预训练的向量没有未知标记,目前代码在生成共现计数时只是忽略了词汇表外的单词。

这是在语料库中出现“unk”时学习到的任何其他嵌入(这似乎偶尔会发生!)

相反,Pennington 建议(在同一篇文章中):

...我发现只取所有或部分词向量的平均值就可以生成一个很好的未知向量。

您可以使用以下代码执行此操作(应该适用于任何预训练的 GloVe 文件):

import numpy as np

GLOVE_FILE = 'glove.6B.50d.txt'

# Get number of vectors and hidden dim
with open(GLOVE_FILE, 'r') as f:
    for i, line in enumerate(f):
        pass
n_vec = i + 1
hidden_dim = len(line.split(' ')) - 1

vecs = np.zeros((n_vec, hidden_dim), dtype=np.float32)

with open(GLOVE_FILE, 'r') as f:
    for i, line in enumerate(f):
        vecs[i] = np.array([float(n) for n in line.split(' ')[1:]], dtype=np.float32)

average_vec = np.mean(vecs, axis=0)
print(average_vec)

对于glove.6B.50d.txt,这给出:

[-0.12920076 -0.28866628 -0.01224866 -0.05676644 -0.20210965 -0.08389011
  0.33359843  0.16045167  0.03867431  0.17833012  0.04696583 -0.00285802
  0.29099807  0.04613704 -0.20923874 -0.06613114 -0.06822549  0.07665912
  0.3134014   0.17848536 -0.1225775  -0.09916984 -0.07495987  0.06413227
  0.14441176  0.60894334  0.17463093  0.05335403 -0.01273871  0.03474107
 -0.8123879  -0.04688699  0.20193407  0.2031118  -0.03935686  0.06967544
 -0.01553638 -0.03405238 -0.06528071  0.12250231  0.13991883 -0.17446303
 -0.08011883  0.0849521  -0.01041659 -0.13705009  0.20127155  0.10069408
  0.00653003  0.01685157]

由于使用较大的手套文件执行此操作需要大量计算,因此我继续为您计算 glove.840B.300d.txt 的向量:

0.22418134 -0.28881392 0.13854356 0.00365387 -0.12870757 0.10243822 0.061626635 0.07318011 -0.061350107 -1.3477012 0.42037755 -0.063593924 -0.09683349 0.18086134 0.23704372 0.014126852 0.170096 -1.1491593 0.31497982 0.06622181 0.024687296 0.076693475 0.13851812 0.021302193 -0.06640582 -0.010336159 0.13523154 -0.042144544 -0.11938788 0.006948221 0.13333307 -0.18276379 0.052385733 0.008943111 -0.23957317 0.08500333 -0.006894406 0.0015864656 0.063391194 0.19177166 -0.13113557 -0.11295479 -0.14276934 0.03413971 -0.034278486 -0.051366422 0.18891625 -0.16673574 -0.057783455 0.036823478 0.08078679 0.022949161 0.033298038 0.011784158 0.05643189 -0.042776518 0.011959623 0.011552498 -0.0007971594 0.11300405 -0.031369694 -0.0061559738 -0.009043574 -0.415336 -0.18870236 0.13708843 0.005911723 -0.113035575 -0.030096142 -0.23908928 -0.05354085 -0.044904727 -0.20228513 0.0065645403 -0.09578946 -0.07391877 -0.06487607 0.111740574 -0.048649278 -0.16565254 -0.052037314 -0.078968436 0.13684988 0.0757494 -0.006275573 0.28693774 0.52017444 -0.0877165 -0.33010918 -0.1359622 0.114895485 -0.09744406 0.06269521 0.12118575 -0.08026362 0.35256687 -0.060017522 -0.04889904 -0.06828978 0.088740796 0.003964443 -0.0766291 0.1263925 0.07809314 -0.023164088 -0.5680669 -0.037892066 -0.1350967 -0.11351585 -0.111434504 -0.0905027 0.25174105 -0.14841858 0.034635577 -0.07334565 0.06320108 -0.038343467 -0.05413284 0.042197507 -0.090380974 -0.070528865 -0.009174437 0.009069661 0.1405178 0.02958134 -0.036431845 -0.08625681 0.042951006 0.08230793 0.0903314 -0.12279937 -0.013899368 0.048119213 0.08678239 -0.14450377 -0.04424887 0.018319942 0.015026873 -0.100526 0.06021201 0.74059093 -0.0016333034 -0.24960588 -0.023739101 0.016396184 0.11928964 0.13950661 -0.031624354 -0.01645025 0.14079992 -0.0002824564 -0.08052984 -0.0021310581 -0.025350995 0.086938225 0.14308536 0.17146006 -0.13943303 0.048792403 0.09274929 -0.053167373 0.031103406 0.012354865 0.21057427 0.32618305 0.18015954 -0.15881181 0.15322933 -0.22558987 -0.04200665 0.0084689725 0.038156632 0.15188617 0.13274793 0.113756925 -0.095273495 -0.049490947 -0.10265804 -0.27064866 -0.034567792 -0.018810693 -0.0010360252 0.10340131 0.13883452 0.21131058 -0.01981019 0.1833468 -0.10751636 -0.03128868 0.02518242 0.23232952 0.042052146 0.11731903 -0.15506615 0.0063580726 -0.15429358 0.1511722 0.12745973 0.2576985 -0.25486213 -0.0709463 0.17983761 0.054027 -0.09884228 -0.24595179 -0.093028545 -0.028203879 0.094398156 0.09233813 0.029291354 0.13110267 0.15682974 -0.016919162 0.23927948 -0.1343307 -0.22422817 0.14634751 -0.064993896 0.4703685 -0.027190214 0.06224946 -0.091360025 0.21490277 -0.19562101 -0.10032754 -0.09056772 -0.06203493 -0.18876675 -0.10963594 -0.27734384 0.12616494 -0.02217992 -0.16058226 -0.080475815 0.026953284 0.110732645 0.014894041 0.09416802 0.14299914 -0.1594008 -0.066080004 -0.007995227 -0.11668856 -0.13081996 -0.09237365 0.14741232 0.09180138 0.081735 0.3211204 -0.0036552632 -0.047030564 -0.02311798 0.048961394 0.08669574 -0.06766279 -0.50028914 -0.048515294 0.14144728 -0.032994404 -0.11954345 -0.14929578 -0.2388355 -0.019883996 -0.15917352 -0.052084364 0.2801028 -0.0029121689 -0.054581646 -0.47385484 0.17112483 -0.12066923 -0.042173345 0.1395337 0.26115036 0.012869649 0.009291686 -0.0026459037 -0.075331464 0.017840583 -0.26869613 -0.21820338 -0.17084768 -0.1022808 -0.055290595 0.13513643 0.12362477 -0.10980586 0.13980341 -0.20233242 0.08813751 0.3849736 -0.10653763 -0.06199595 0.028849555 0.03230154 0.023856193 0.069950655 0.19310954 -0.077677034 -0.144811

【讨论】:

这是作者的有趣指导,但它似乎也忽略了给定语料库中单词的相对频率。也就是说,这里是质心,而不是重心,更深一点。您是否同意我的评估,如果同意,您可能会推荐哪些替代方案?例如,为什么不简单地使用原点?【参考方案2】:

由于无法发表评论,写另一个答案。

如果有人在使用@jayelm 给出的上述向量时遇到问题,因为复制粘贴不起作用。我正在编写 2 行代码,它们将为您提供准备好在 python 中使用的向量。

vec_string = '0.22418134 -0.28881392 0.13854356 0.00365387 -0.12870757 0.10243822 0.061626635 0.07318011 -0.061350107 -1.3477012 0.42037755 -0.063593924 -0.09683349 0.18086134 0.23704372 0.014126852 0.170096 -1.1491593 0.31497982 0.06622181 0.024687296 0.076693475 0.13851812 0.021302193 -0.06640582 -0.010336159 0.13523154 -0.042144544 -0.11938788 0.006948221 0.13333307 -0.18276379 0.052385733 0.008943111 -0.23957317 0.08500333 -0.006894406 0.0015864656 0.063391194 0.19177166 -0.13113557 -0.11295479 -0.14276934 0.03413971 -0.034278486 -0.051366422 0.18891625 -0.16673574 -0.057783455 0.036823478 0.08078679 0.022949161 0.033298038 0.011784158 0.05643189 -0.042776518 0.011959623 0.011552498 -0.0007971594 0.11300405 -0.031369694 -0.0061559738 -0.009043574 -0.415336 -0.18870236 0.13708843 0.005911723 -0.113035575 -0.030096142 -0.23908928 -0.05354085 -0.044904727 -0.20228513 0.0065645403 -0.09578946 -0.07391877 -0.06487607 0.111740574 -0.048649278 -0.16565254 -0.052037314 -0.078968436 0.13684988 0.0757494 -0.006275573 0.28693774 0.52017444 -0.0877165 -0.33010918 -0.1359622 0.114895485 -0.09744406 0.06269521 0.12118575 -0.08026362 0.35256687 -0.060017522 -0.04889904 -0.06828978 0.088740796 0.003964443 -0.0766291 0.1263925 0.07809314 -0.023164088 -0.5680669 -0.037892066 -0.1350967 -0.11351585 -0.111434504 -0.0905027 0.25174105 -0.14841858 0.034635577 -0.07334565 0.06320108 -0.038343467 -0.05413284 0.042197507 -0.090380974 -0.070528865 -0.009174437 0.009069661 0.1405178 0.02958134 -0.036431845 -0.08625681 0.042951006 0.08230793 0.0903314 -0.12279937 -0.013899368 0.048119213 0.08678239 -0.14450377 -0.04424887 0.018319942 0.015026873 -0.100526 0.06021201 0.74059093 -0.0016333034 -0.24960588 -0.023739101 0.016396184 0.11928964 0.13950661 -0.031624354 -0.01645025 0.14079992 -0.0002824564 -0.08052984 -0.0021310581 -0.025350995 0.086938225 0.14308536 0.17146006 -0.13943303 0.048792403 0.09274929 -0.053167373 0.031103406 0.012354865 0.21057427 0.32618305 0.18015954 -0.15881181 0.15322933 -0.22558987 -0.04200665 0.0084689725 0.038156632 0.15188617 0.13274793 0.113756925 -0.095273495 -0.049490947 -0.10265804 -0.27064866 -0.034567792 -0.018810693 -0.0010360252 0.10340131 0.13883452 0.21131058 -0.01981019 0.1833468 -0.10751636 -0.03128868 0.02518242 0.23232952 0.042052146 0.11731903 -0.15506615 0.0063580726 -0.15429358 0.1511722 0.12745973 0.2576985 -0.25486213 -0.0709463 0.17983761 0.054027 -0.09884228 -0.24595179 -0.093028545 -0.028203879 0.094398156 0.09233813 0.029291354 0.13110267 0.15682974 -0.016919162 0.23927948 -0.1343307 -0.22422817 0.14634751 -0.064993896 0.4703685 -0.027190214 0.06224946 -0.091360025 0.21490277 -0.19562101 -0.10032754 -0.09056772 -0.06203493 -0.18876675 -0.10963594 -0.27734384 0.12616494 -0.02217992 -0.16058226 -0.080475815 0.026953284 0.110732645 0.014894041 0.09416802 0.14299914 -0.1594008 -0.066080004 -0.007995227 -0.11668856 -0.13081996 -0.09237365 0.14741232 0.09180138 0.081735 0.3211204 -0.0036552632 -0.047030564 -0.02311798 0.048961394 0.08669574 -0.06766279 -0.50028914 -0.048515294 0.14144728 -0.032994404 -0.11954345 -0.14929578 -0.2388355 -0.019883996 -0.15917352 -0.052084364 0.2801028 -0.0029121689 -0.054581646 -0.47385484 0.17112483 -0.12066923 -0.042173345 0.1395337 0.26115036 0.012869649 0.009291686 -0.0026459037 -0.075331464 0.017840583 -0.26869613 -0.21820338 -0.17084768 -0.1022808 -0.055290595 0.13513643 0.12362477 -0.10980586 0.13980341 -0.20233242 0.08813751 0.3849736 -0.10653763 -0.06199595 0.028849555 0.03230154 0.023856193 0.069950655 0.19310954 -0.077677034 -0.144811'
import numpy as np
average_glove_vector = np.array(vec_string.split(" "))
print(average_glove_vector)

【讨论】:

以上是关于预训练的 GloVe 矢量文件(例如 glove.6B.50d.txt)中的“unk”是啥?的主要内容,如果未能解决你的问题,请参考以下文章

在 TensorFlow 中使用预训练的词嵌入(word2vec 或 Glove)

使用github--stanfordnlp--glove训练自己的数据词向量

中文情感分析 glove+LSTM

Glove词向量

词向量:GloVe

NLPfrom glove import Glove的使用模型保存和加载