使用github--stanfordnlp--glove训练自己的数据词向量

Posted dhname

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了使用github--stanfordnlp--glove训练自己的数据词向量相关的知识,希望对你有一定的参考价值。

1.准备语料

准备好自己的语料,保存为txt,每行一个句子或一段话,注意要分好词。将分好词的语料保存为×××.txt

2.准备源码

下载地址:https://github.com/stanfordnlp/GloVe,解压后将语料×××.txt添加到GloVe-master文件夹下

3.修改训练语料地址

打开demo.sh文件,由于默认是下载TXT8作为语料,故将这段代码删除,并修改CORPUS=×××.txt,最终文件内容如下:

技术图片

其他应该都可以自行修改。

 

4.执行

打开终端,进入GloVe-master文件后:

(1)make

技术图片

 

 

(2)demo.sh

技术图片

 

技术图片

 

 

5.修改词向量文件

训练后会得到vetors.txt,打开后在第一行加上vacob_size vector_size,这样才能用word2vec的load函数加载成功

第一个数指明一共有多少个向量,第二个数指明每个向量有多少维

 

6.加载使用巽寮的词向量

1 from gensim.models import Word2Vec  
2   
3 model = Word2Vec.load_word2vec_format(‘vectors.txt’, binary=False) 

接下来的使用就和word2vec一样

 

以上是关于使用github--stanfordnlp--glove训练自己的数据词向量的主要内容,如果未能解决你的问题,请参考以下文章

在使用加载数据流步骤的猪中,使用(使用 PigStorage)和不使用它有啥区别?

今目标使用教程 今目标任务使用篇

Qt静态编译时使用OpenSSL有三种方式(不使用,动态使用,静态使用,默认是动态使用)

MySQL db 在按日期排序时使用“使用位置;使用临时;使用文件排序”

使用“使用严格”作为“使用强”的备份

Kettle java脚本组件的使用说明(简单使用升级使用)