如何向线性回归数据集添加异常值?

Posted

技术标签:

【中文标题】如何向线性回归数据集添加异常值?【英文标题】:How to add outliers to a Linear Regression dataset? 【发布时间】:2022-01-15 05:09:41 【问题描述】:

我正在尝试查看数据集中的异常值如何影响线性回归模型。我遇到的问题是我不完全知道如何将异常值添加到数据集,我只在网上找到了大量关于如何检测和删除它们的文章。

这是我目前的代码:

import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.linear_model import LinearRegression
from sklearn.datasets import make_regression


# Generate regression dataset
X, y = make_regression(
    n_samples=1000,
    n_features=1,
    noise=0.0,
    bias=0.0,
    random_state=42,
)

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42
)

regressor = LinearRegression()
regressor.fit(X_train, y_train)  # Training the algorithm

y_pred = regressor.predict(X_test)

print("R2 Score:", metrics.r2_score(y_test, y_pred))
print("Mean Absolute Error:", metrics.mean_absolute_error(y_test, y_pred))
print("Mean Squared Error:", metrics.mean_squared_error(y_test, y_pred))
print("Root Mean Squared Error:", np.sqrt(metrics.mean_squared_error(y_test, y_pred)))

plt.scatter(X_test, y_test)
plt.plot(X_test, y_pred, color="red", linewidth=1)
plt.show()

这是输出:

我的问题是如何将异常值添加到这个干净的数据集中,以查看异常值对生成的模型的影响?

任何帮助将不胜感激,谢谢!

【问题讨论】:

为什么不增加make_regression中的noise参数 嘿,在数据中添加噪音不会以其他方式影响它吗?我只想检查一个因素,即异常值如何影响数据。 【参考方案1】:

您可以直接向Xy 添加值。由于斜率足够大,这最终会给你带来异常值。您可以使用任何您想要的方法。

import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn import metrics
from sklearn.linear_model import LinearRegression
from sklearn.datasets import make_regression


# Generate regression dataset
X, y = make_regression(
    n_samples=1000,
    n_features=1,
    noise=0.0,
    bias=0.0,
    random_state=42,
)

for x in range(20):
    X=np.append(X, np.random.choice(X.flatten()))
    y=np.append(y, np.random.choice(y.flatten()))

X = X.reshape(-1,1)
y = y.reshape(-1,1)

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42
)

regressor = LinearRegression()
regressor.fit(X_train, y_train)  # Training the algorithm

y_pred = regressor.predict(X_test)

print("R2 Score:", metrics.r2_score(y_test, y_pred))
print("Mean Absolute Error:", metrics.mean_absolute_error(y_test, y_pred))
print("Mean Squared Error:", metrics.mean_squared_error(y_test, y_pred))
print("Root Mean Squared Error:", np.sqrt(metrics.mean_squared_error(y_test, y_pred)))

plt.scatter(X_test, y_test)
plt.plot(X_test, y_pred, color="red", linewidth=1)
plt.show()

【讨论】:

以上是关于如何向线性回归数据集添加异常值?的主要内容,如果未能解决你的问题,请参考以下文章

使用太阳黑子数据集执行线性回归

用Python实现岭回归算法与Lasso回归算法并处理Iris数据集

线性回归模型之波士顿房价预测

朱莉娅 |如何对 TimeArray 数据集执行线性回归

机器学习之线性回归

机器学习—— 线性回归