负二项式回归:系数解释
Posted
技术标签:
【中文标题】负二项式回归:系数解释【英文标题】:Negative Binomial Regression: coefficient interpretation 【发布时间】:2018-10-06 10:42:39 【问题描述】:如何解释负二项式回归模型中的系数(截距、分类变量、连续变量)?回归背后的基本公式是什么(比如泊松回归,就是$\ln(\mu)=\beta_0+\beta_1 x_1 + \dots$)?
下面我有一个我想解释的特定模型的示例输出,其中癫痫发作率是计数变量和治疗分类(安慰剂与非安慰剂)。
Call:
glm.nb(formula = seizure.rate2 ~ treatment2, data = epilepsy2,
init.theta = 1.499060952, link = log)
Deviance Residuals:
Min 1Q Median 3Q Max
-2.3504 -0.8814 -0.4627 0.4279 1.8897
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.0750 0.1683 12.332 <2e-16 ***
treatment2Progabide -0.4994 0.2397 -2.084 0.0372 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for Negative Binomial(1.4991) family taken to be 1)
Null deviance: 71.220 on 57 degrees of freedom
Residual deviance: 66.879 on 56 degrees of freedom
AIC: 339.12
Number of Fisher Scoring iterations: 1
Theta: 1.499
Std. Err.: 0.362
2 x log-likelihood: -333.120
【问题讨论】:
【参考方案1】:它是系数总和的指数: seizure.rate2=exp(2.0750-0.4994*treatment2Proabide) =exp(2.075)*exp(-0.4994*treatment2Proabide)
或者你可以使用代码 名字(你的模特名) 此代码将为您提供名称的输出,您可以查看 fitted.values 来为您提供预测值。我偶尔会这样做作为双重检查,看看我是否正确地写出了我的公式。
【讨论】:
非常感谢杰西!以上是关于负二项式回归:系数解释的主要内容,如果未能解决你的问题,请参考以下文章