负二项式回归:系数解释

Posted

技术标签:

【中文标题】负二项式回归:系数解释【英文标题】:Negative Binomial Regression: coefficient interpretation 【发布时间】:2018-10-06 10:42:39 【问题描述】:

如何解释负二项式回归模型中的系数(截距、分类变量、连续变量)?回归背后的基本公式是什么(比如泊松回归,就是$\ln(\mu)=\beta_0+\beta_1 x_1 + \dots$)?

下面我有一个我想解释的特定模型的示例输出,其中癫痫发作率是计数变量和治疗分类(安慰剂与非安慰剂)。

Call:
glm.nb(formula = seizure.rate2 ~ treatment2, data = epilepsy2, 
    init.theta = 1.499060952, link = log)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-2.3504  -0.8814  -0.4627   0.4279   1.8897  

Coefficients:
                    Estimate Std. Error z value Pr(>|z|)    
(Intercept)           2.0750     0.1683  12.332   <2e-16 ***
treatment2Progabide  -0.4994     0.2397  -2.084   0.0372 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for Negative Binomial(1.4991) family taken to be 1)

    Null deviance: 71.220  on 57  degrees of freedom
Residual deviance: 66.879  on 56  degrees of freedom
AIC: 339.12

Number of Fisher Scoring iterations: 1


              Theta:  1.499 
          Std. Err.:  0.362 

 2 x log-likelihood:  -333.120 

【问题讨论】:

【参考方案1】:

它是系数总和的指数: seizure.rate2=exp(2.0750-0.4994*treatment2Proabide) =exp(2.075)*exp(-0.4994*treatment2Proabide)

或者你可以使用代码 名字(你的模特名) 此代码将为您提供名称的输出,您可以查看 fitted.values 来为您提供预测值。我偶尔会这样做作为双重检查,看看我是否正确地写出了我的公式。

【讨论】:

非常感谢杰西!

以上是关于负二项式回归:系数解释的主要内容,如果未能解决你的问题,请参考以下文章

6.逻辑回归

Spark 多项式 Logistic 回归中的意外系数

拓端tecdat|R语言编程指导用线性模型进行臭氧预测: 加权泊松回归,普通最小二乘,加权负二项式模型,多重插补缺失值

从逻辑回归系数中推导出新的连续变量

多项式回归学习笔记

怎样用SPSS做二次多项式回归方程