使用带有 Pandas DataFrame 的 Scikit-Learn OneHotEncoder
Posted
技术标签:
【中文标题】使用带有 Pandas DataFrame 的 Scikit-Learn OneHotEncoder【英文标题】:Using Scikit-Learn OneHotEncoder with a Pandas DataFrame 【发布时间】:2020-01-25 19:22:30 【问题描述】:我正在尝试使用 Scikit-Learn 的 OneHotEncoder 将 Pandas DataFrame 中包含字符串的列替换为单热编码等效项。我下面的代码不起作用:
from sklearn.preprocessing import OneHotEncoder
# data is a Pandas DataFrame
jobs_encoder = OneHotEncoder()
jobs_encoder.fit(data['Profession'].unique().reshape(1, -1))
data['Profession'] = jobs_encoder.transform(data['Profession'].to_numpy().reshape(-1, 1))
它会产生以下错误(列表中的字符串被省略):
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-91-3a1f568322f5> in <module>()
3 jobs_encoder = OneHotEncoder()
4 jobs_encoder.fit(data['Profession'].unique().reshape(1, -1))
----> 5 data['Profession'] = jobs_encoder.transform(data['Profession'].to_numpy().reshape(-1, 1))
/usr/local/anaconda3/envs/ml/lib/python3.6/site-packages/sklearn/preprocessing/_encoders.py in transform(self, X)
730 copy=True)
731 else:
--> 732 return self._transform_new(X)
733
734 def inverse_transform(self, X):
/usr/local/anaconda3/envs/ml/lib/python3.6/site-packages/sklearn/preprocessing/_encoders.py in _transform_new(self, X)
678 """New implementation assuming categorical input"""
679 # validation of X happens in _check_X called by _transform
--> 680 X_int, X_mask = self._transform(X, handle_unknown=self.handle_unknown)
681
682 n_samples, n_features = X_int.shape
/usr/local/anaconda3/envs/ml/lib/python3.6/site-packages/sklearn/preprocessing/_encoders.py in _transform(self, X, handle_unknown)
120 msg = ("Found unknown categories 0 in column 1"
121 " during transform".format(diff, i))
--> 122 raise ValueError(msg)
123 else:
124 # Set the problematic rows to an acceptable value and
ValueError: Found unknown categories ['...', ..., '...'] in column 0 during transform
以下是一些示例数据:
data['Profession'] =
0 unkn
1 safe
2 rece
3 unkn
4 lead
...
111988 indu
111989 seni
111990 mess
111991 seni
111992 proj
Name: Profession, Length: 111993, dtype: object
我到底做错了什么?
【问题讨论】:
请包括完整错误跟踪,以及您的data['Profession']
的样本。
一个热编码器会返回一个大小为data_length x num_categories
的二维数组。您不能分配给单个列 df['Profession']
。
对 dd 答案的跟进。我们可以将 OneHotEncoder 用于多列数据,而不能用于 LabelBinarizer 和 LabelEncoder。 ***.com/a/54119850/1582366
【参考方案1】:
OneHotEncoder 将分类整数特征编码为 one-hot 数值数组。如果sparse=True
,它的Transform方法返回一个稀疏矩阵,否则返回一个二维数组。
您不能将 二维数组(或稀疏矩阵)转换为 Pandas 系列。您必须为每个类别创建一个 Pandas Serie(Pandas 数据帧中的一列)。
我会推荐pandas.get_dummies:
data = pd.get_dummies(data,prefix=['Profession'], columns = ['Profession'], drop_first=True)
编辑:
使用 Sklearn OneHotEncoder:
transformed = jobs_encoder.transform(data['Profession'].to_numpy().reshape(-1, 1))
#Create a Pandas DataFrame of the hot encoded column
ohe_df = pd.DataFrame(transformed, columns=jobs_encoder.get_feature_names())
#concat with original data
data = pd.concat([data, ohe_df], axis=1).drop(['Profession'], axis=1)
其他选项:如果您使用GridSearch 进行超参数调整,建议使用ColumnTransformer 和FeatureUnion 和Pipeline 或直接使用make_column_transformer
【讨论】:
我希望能够腌制实例以在将来在新数据上使用它,这就是我想使用 OneHotEncoder 的原因,这不能用 get_dummies 来完成,对吧? 没错。如果你想在新数据上使用它,你不能使用 get_dummies。【参考方案2】:原来 Scikit-Learns LabelBinarizer 在 Amnie's solution 的帮助下将数据转换为 one-hot 编码格式给了我更好的运气,我的最终代码如下
import pandas as pd
from sklearn.preprocessing import LabelBinarizer
jobs_encoder = LabelBinarizer()
jobs_encoder.fit(data['Profession'])
transformed = jobs_encoder.transform(data['Profession'])
ohe_df = pd.DataFrame(transformed)
data = pd.concat([data, ohe_df], axis=1).drop(['Profession'], axis=1)
【讨论】:
【参考方案3】:以下是 Kaggle Learn 建议的一种方法。不要认为目前有更简单的方法可以从原始的 pandas DataFrame
变为 one-hot 编码的 DataFrame
。
# Apply one-hot encoder to each column with categorical data
OH_encoder = OneHotEncoder(handle_unknown='ignore', sparse=False)
OH_cols_train = pd.DataFrame(OH_encoder.fit_transform(X_train[low_cardinality_cols]))
OH_cols_valid = pd.DataFrame(OH_encoder.transform(X_valid[low_cardinality_cols]))
# One-hot encoding removed index; put it back
OH_cols_train.index = X_train.index
OH_cols_valid.index = X_valid.index
# Remove categorical columns (will replace with one-hot encoding)
num_X_train = X_train.drop(object_cols, axis=1)
num_X_valid = X_valid.drop(object_cols, axis=1)
# Add one-hot encoded columns to numerical features
OH_X_train = pd.concat([num_X_train, OH_cols_train], axis=1)
OH_X_valid = pd.concat([num_X_valid, OH_cols_valid], axis=1)
print(OH_X_train)
【讨论】:
【参考方案4】:这样就可以了。如果您对即不感兴趣,请删除情节部分。如果您不需要降价,也将 printmd 更改为打印。
def fn_cat_onehot(df):
"""Generate onehoteencoded features for all categorical columns in df"""
printmd(f"df shape: df.shape")
# NaN handing
nan_count = df.isna().sum().sum()
if nan_count > 0:
printmd(f"NaN = **nan_count** will be categorized under feature_nan columns")
# generation
from sklearn.preprocessing import OneHotEncoder
model_oh = OneHotEncoder(handle_unknown="ignore", sparse=False)
for c in df.select_dtypes("category").columns:
printmd(f"Encoding **c**") # which column
matrix = model_oh.fit_transform(
df[[c]]
) # get a matrix of new features and values
names = model_oh.get_feature_names_out() # get names for these features
df_oh = pd.DataFrame(
data=matrix, columns=names, index=df.index
) # create df of these new features
display(df_oh.plot.hist())
df = pd.concat([df, df_oh], axis=1) # concat with existing df
df.drop(
c, axis=1, inplace=True
) # drop categorical column so that it is all numerical for modelling
printmd(f"#### New df shape: **df.shape**")
return df
【讨论】:
以上是关于使用带有 Pandas DataFrame 的 Scikit-Learn OneHotEncoder的主要内容,如果未能解决你的问题,请参考以下文章
带有分类标记的行/列的散点图 Pandas DataFrame