python中的最小二乘法?
Posted
技术标签:
【中文标题】python中的最小二乘法?【英文标题】:Least square method in python? 【发布时间】:2017-09-22 20:11:12 【问题描述】:我有这些价值观:
T_values = (222, 284, 308.5, 333, 358, 411, 477, 518, 880, 1080, 1259) (x values)
C/(3Nk)_values = (0.1282, 0.2308, 0.2650, 0.3120 , 0.3547, 0.4530, 0.5556, 0.6154, 0.8932, 0.9103, 0.9316) (y values)
我知道他们遵循模型:
C/(3Nk)=(h*w/(k*T))**2*(exp(h*w/(k*T)))/(exp(h*w/(k*T)-1))**2
我也知道k=1.38*10**(-23)
和h=6.626*10**(-34)
。
我必须找到最能描述测量数据的 w。我想在 python 中使用最小二乘法来解决这个问题,但是我不太明白它是如何工作的。谁能帮帮我?
【问题讨论】:
C/(3Nk) 等式中是否缺少负号? 【参考方案1】:此答案提供了使用 Python 确定一般指数模式的拟合参数的演练。另请参阅 linearization techniques 上的相关帖子并使用 lmfit
库。
数据清洗
首先,让我们将采样数据输入并组织为 numpy 数组,这将有助于以后的计算和清晰度。
import matplotlib.pyplot as plt
import scipy.optimize as opt
import numpy as np
#% matplotlib inline
# DATA ------------------------------------------------------------------------
T_values = np.array([222, 284, 308.5, 333, 358, 411, 477, 518, 880, 1080, 1259])
C_values = np.array([0.1282, 0.2308, 0.2650, 0.3120 , 0.3547, 0.4530, 0.5556, 0.6154, 0.8932, 0.9103, 0.9316])
x_samp = T_values
y_samp = C_values
在 scipy 和 numpy 中有许多 curve fitting 函数,每个函数的使用方式不同,例如scipy.optimize.leastsq
和 scipy.optimize.least_squares
。为简单起见,我们将使用scipy.optimize.curve_fit
,但如果不选择合理的起始参数,很难找到优化的回归曲线。稍后将演示一个简单的技术来选择起始参数。
评论
首先,虽然 OP 提供了一个预期的拟合方程,但我们将通过回顾指数函数的一般方程来解决使用 Python 进行曲线拟合的问题:
现在我们构建这个通用函数,会用到几次:
# GENERAL EQUATION ------------------------------------------------------------
def func(x, A, c, d):
return A*np.exp(c*x) + d
趋势
幅度:一个小的A
给出一个小幅度
shape:一个小的c
通过拉平曲线的“膝盖”来控制形状
位置:d
设置 y 轴截距
方向:负值A
将曲线翻转横过水平轴;否定的c
会在垂直轴上翻转曲线
后一种趋势如下图所示,突出显示对照(黑线)与具有不同参数的线(红线)相比:
选择初始参数
使用后面的趋势,让我们接下来看一下数据,并尝试通过调整这些参数来模拟曲线。为了演示,我们针对我们的数据绘制了几个试验方程:
# SURVEY ----------------------------------------------------------------------
# Plotting Sampling Data
plt.plot(x_samp, y_samp, "ko", label="Data")
x_lin = np.linspace(0, x_samp.max(), 50) # a number line, 50 evenly spaced digits between 0 and max
# Trials
A, c, d = -1, -1e-2, 1
y_trial1 = func(x_lin, A, c, d)
y_trial2 = func(x_lin, -1, -1e-3, 1)
y_trial3 = func(x_lin, -1, -3e-3, 1)
plt.plot(x_lin, y_trial1, "--", label="Trial 1")
plt.plot(x_lin, y_trial2, "--", label="Trial 2")
plt.plot(x_lin, y_trial3, "--", label="Trial 3")
plt.legend()
通过简单的反复试验,我们可以更好地近似曲线的形状、幅度、位置和方向。例如,我们知道前两个参数(A
和 c
)必须为负数。我们对c
的数量级也有合理的猜测。
计算估计参数
我们现在将使用最佳试验的参数进行初步猜测:
# REGRESSION ------------------------------------------------------------------
p0 = [-1, -3e-3, 1] # guessed params
w, _ = opt.curve_fit(func, x_samp, y_samp, p0=p0)
print("Estimated Parameters", w)
# Model
y_model = func(x_lin, *w)
# PLOT ------------------------------------------------------------------------
# Visualize data and fitted curves
plt.plot(x_samp, y_samp, "ko", label="Data")
plt.plot(x_lin, y_model, "k--", label="Fit")
plt.title("Least squares regression")
plt.legend(loc="upper left")
# Estimated Parameters [-1.66301087 -0.0026884 1.00995394]
这是如何工作的?
curve_fit
是 scipy 提供的众多 optimization functions 之一。给定一个初始值,迭代地细化生成的估计参数,以使生成的曲线最小化残差,或拟合线与采样数据之间的差异。更好的猜测会减少迭代次数并加快结果。通过拟合曲线的这些估计参数,现在可以计算特定方程的特定系数(留给 OP 的最后练习)。
【讨论】:
【参考方案2】:你想使用scipy
:
import scipy.optimize.curve_fit
def my_model(T,w):
return (hw/(kT))**2*(exp(hw/(kT)))/(exp(hw/(kT)-1))**2
w= 0 #initial guess
popt, pcov = curve_fit(my_model, T_values, C_values,p0=[w])
【讨论】:
我试过了,我得到以下错误代码:C:\Users\philh\Anaconda3\lib\site-packages\scipy\optimize\minpack.py:715: OptimizeWarning: Covariance of the parameters could not be estimated category=OptimizeWarning)
有什么建议吗?以上是关于python中的最小二乘法?的主要内容,如果未能解决你的问题,请参考以下文章