pyspark的RDD代码纪录

Posted vv.past

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了pyspark的RDD代码纪录相关的知识,希望对你有一定的参考价值。

pyspark rdd.py文件代码纪录

代码版本为 spark 2.2.0

1.RDD及常见算子

class RDD(): #这里简单介绍几个典型的算子,其余的算子代码可以自己去看一看
    
    def __init__(self, jrdd, ctx, jrdd_deserializer=AutoBatchedSerializer(PickleSerializer())):
        """
        _jrdd是个非常重要的属性,这个属性会在pyspark的计算过程中被全程传递
        pyspark里被第一个建立出来的RDD往往都是通过jvm调用建立起来的数据源RDD
        这个_jrdd的值就是这个jvm里对应的数据源RDD
        这里需要记住,这个rdd最终在执行任务的时候被jvm执行,将数据源数据传递给python进程
        """
        self._jrdd = jrdd
        self.is_cached = False
        self.is_checkpointed = False
        self.ctx = ctx
        self._jrdd_deserializer = jrdd_deserializer
        self._id = jrdd.id()
        self.partitioner = None

    #最重要也是也是最基本的action
    #其它action都是最终调用此action实现
    def collect(self):
        """
        返回的是一个list,所有分区的结果集
        调用的是scala中对应的PythonRDD对象的collectAndServer方法触发任务的执行
        collect是所有其它action动作的基础跟入口,也就是说collectAndServer是统一执行入口
        """
        with SCCallSiteSync(self.context) as css:
            #提交任务的时候给了一个参数,就是_jrdd对应的rdd
            #这个是最初的数据源rdd或者是PythonRDD
            #这里需要记住,因为当转到scala里的PythonRDD的时候就看出此处的作用了
            port = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
        return list(_load_from_socket(port, self._jrdd_deserializer))

    #reduce action
    def reduce(self, f):
        """
        可以看见此次最终调用的也是collect()
        """
        def func(iterator):
            iterator = iter(iterator)
            try:
                initial = next(iterator)
            except StopIteration:
                return
            yield reduce(f, iterator, initial)

        vals = self.mapPartitions(func).collect() #这里
        if vals:
            return reduce(f, vals)
        raise ValueError("Can not reduce() empty RDD")
        
    
    #这个函数是其它几个action的基础,也是调用collect实现的
    def fold(self, zeroValue, op):
        """
        这个函数最终调用的也是collect()来提交任务
        这个函数被foreach,sum,count等action调用
        """
        def func(iterator):
            acc = zeroValue
            for obj in iterator:
                acc = op(acc, obj)
            yield acc

        vals = self.mapPartitions(func).collect() #这里
        return reduce(op, vals, zeroValue)

    def union(self, other):
        """
        这个算子pyspark本地并未做过多处理,直接使用的jvm中对应的union
        
        """
        if self._jrdd_deserializer == other._jrdd_deserializer:
            rdd = RDD(self._jrdd.union(other._jrdd), self.ctx,
                      self._jrdd_deserializer)
        else:
            # These RDDs contain data in different serialized formats, so we
            # must normalize them to the default serializer.
            self_copy = self._reserialize()
            other_copy = other._reserialize()
            rdd = RDD(self_copy._jrdd.union(other_copy._jrdd), self.ctx,
                      self.ctx.serializer)
        if (self.partitioner == other.partitioner and
                self.getNumPartitions() == rdd.getNumPartitions()):
            rdd.partitioner = self.partitioner
        return rdd

    #这个函数也很重要,如果说所有action的基础是collect
    #那么所有transform的基础是这个
    def mapPartitionsWithIndex(self, f, preservesPartitioning=False):
        """
        这个函数被上层其它的转换算子调用
        map,flatMap,mapPartitions,reduceByKey,combinerByKey等等
        PipelinedRDD 是pyspark中第二个RDD类型,所有转换操作返回的类型都是这个类型
        """
        return PipelinedRDD(self, f, preservesPartitioning)

    def mapPartitions(self, f, preservesPartitioning=False):
        """
        可以看见也是调用了mapPartitionsWithIndex实现的
        这里定义的func是个关键,封装了用户的方法,在PipelinedRDD中函数被嵌套封装起来
        """
        def func(s, iterator):
            return f(iterator)
        return self.mapPartitionsWithIndex(func, preservesPartitioning)

    def flatMap(self, f, preservesPartitioning=False):
        """
        可以看见同上一个函数类似
        """
        def func(s, iterator):
            return chain.from_iterable(map(f, iterator))
        return self.mapPartitionsWithIndex(func, preservesPartitioning)

    def join(self, other, numPartitions=None):
        """
        join是通过调用python_join实现的,这个函数在pyspark join.py文件中实现的
        join.py中的实现代码将在其它部分说明
        此处只做简略说明,底层是用union和groupByKey实现的
        """
        return python_join(self, other, numPartitions)

    def reduceByKey(self, func, numPartitions=None, partitionFunc=portable_hash):
        """
        调用的combineByKey实现的
        """
        return self.combineByKey(lambda x: x, func, func, numPartitions, partitionFunc)

    def combineByKey(self, createCombiner, mergeValue, mergeCombiners,
                     numPartitions=None, partitionFunc=portable_hash):
        """
        这个函数实现逻辑是
        1.用mapPartitions把本分区相同的key聚合到一起
        2.然后再用partitionBy重新分区,把相同的key分到相同的分区
        3.再来一次步骤1
        """
        if numPartitions is None:
            numPartitions = self._defaultReducePartitions()

        serializer = self.ctx.serializer
        memory = self._memory_limit()
        agg = Aggregator(createCombiner, mergeValue, mergeCombiners)

        def combineLocally(iterator):
            merger = ExternalMerger(agg, memory * 0.9, serializer)
            merger.mergeValues(iterator)
            return merger.items()

        locally_combined = self.mapPartitions(combineLocally, preservesPartitioning=True)
        shuffled = locally_combined.partitionBy(numPartitions, partitionFunc)

        def _mergeCombiners(iterator):
            merger = ExternalMerger(agg, memory, serializer)
            merger.mergeCombiners(iterator)
            return merger.items()

        return shuffled.mapPartitions(_mergeCombiners, preservesPartitioning=True)

2.PipelinedRDD

class PipelinedRDD(RDD):

    """
    这个类是所有转换操作返回回去的RDD类型,这个类继承了RDD类
    这个类重写了_jrdd属性,返回的jrdd是一个PythonRDD
    PythonRDD的父rdd是最初生成的rdd中的_jrdd
    也就是说,用户使用pyspark代码的时候,执行的jvm代码都是从PythonRDD开始
    """

    def __init__(self, prev, func, preservesPartitioning=False):
        if not isinstance(prev, PipelinedRDD) or not prev._is_pipelinable():
            # 上一个rdd不是PipelinedRDD的话就把原始rdd._jrdd传递下去
            self.func = func
            self.preservesPartitioning = preservesPartitioning
            self._prev_jrdd = prev._jrdd
            self._prev_jrdd_deserializer = prev._jrdd_deserializer
        else:
            prev_func = prev.func

            #这个函数就是把上一个rdd的逻辑和当前的处理逻辑嵌套起来
            #prev_func是上一次转换时指定的函数
            #func是这一次转换时指定的函数
            def pipeline_func(split, iterator):
                return func(split, prev_func(split, iterator))
            self.func = pipeline_func
            self.preservesPartitioning =                 prev.preservesPartitioning and preservesPartitioning
            #上一个rdd是PipelinedRDD的话就把从最初rdd得到的_jrdd传递下去
            self._prev_jrdd = prev._prev_jrdd
            self._prev_jrdd_deserializer = prev._prev_jrdd_deserializer
        self.is_cached = False
        self.is_checkpointed = False
        self.ctx = prev.ctx
        self.prev = prev
        self._jrdd_val = None
        self._id = None
        self._jrdd_deserializer = self.ctx.serializer
        self._bypass_serializer = False
        self.partitioner = prev.partitioner if self.preservesPartitioning else None

    def getNumPartitions(self):
        return self._prev_jrdd.partitions().size()

    @property
    def _jrdd(self):
        """
        这里构造PythonRDD
        """
        if self._jrdd_val:
            return self._jrdd_val
        if self._bypass_serializer:
            self._jrdd_deserializer = NoOpSerializer()

        if self.ctx.profiler_collector:
            profiler = self.ctx.profiler_collector.new_profiler(self.ctx)
        else:
            profiler = None

        #把用户的python代码序列化
        wrapped_func = _wrap_function(self.ctx, self.func, self._prev_jrdd_deserializer,
                                      self._jrdd_deserializer, profiler)
        #构造一个新的_jrdd 类型是PythonRDD,此rdd的父rdd是最初的数据源对应的_jrdd
        #当在此rdd的基础上调用action的时候,传递进去的_jrdd就是这里返回的东西
        python_rdd = self.ctx._jvm.PythonRDD(self._prev_jrdd.rdd(), wrapped_func,
                                             self.preservesPartitioning)
        self._jrdd_val = python_rdd.asJavaRDD()

        if profiler:
            self._id = self._jrdd_val.id()
            self.ctx.profiler_collector.add_profiler(self._id, profiler)
        return self._jrdd_val

    def id(self):
        if self._id is None:
            self._id = self._jrdd.id()
        return self._id

    def _is_pipelinable(self):
        return not (self.is_cached or self.is_checkpointed)

以上是关于pyspark的RDD代码纪录的主要内容,如果未能解决你的问题,请参考以下文章

Spark之RDD的使用(pyspark版)

Spark之RDD的使用(pyspark版)

Dataframe.rdd.map().collect 在 PySpark 中不起作用 [重复]

在 PySpark 中将 Python Dict 转换为稀疏 RDD 或 DF

来自 RDD 的每个键的 PySpark 不同列表

TypeError:元组索引必须是整数,而不是使用 pyspark 和 RDD 的 str