最大堆和最小堆

Posted outthinker

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了最大堆和最小堆相关的知识,希望对你有一定的参考价值。

参考:https://blog.csdn.net/guoweimelon/article/details/50904346

一、堆树的定义

堆树的定义如下:

(1)堆树是一颗完全二叉树;

(2)堆树中某个节点的值总是不大于或不小于其孩子节点的值;

(3)堆树中每个节点的子树都是堆树。

当父节点的键值总是大于或等于任何一个子节点的键值时为最大堆。 当父节点的键值总是小于或等于任何一个子节点的键值时为最小堆。如下图所示,左边为最大堆,右边为最小堆。

技术分享图片技术分享图片

二、堆树的操作

以最大堆为例进行讲解,最小堆同理。

原始数据为a[] = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7},采用顺序存储方式,对应的完全二叉树如下图所示:

技术分享图片

(1)构造最大堆

在构造堆的基本思想就是:首先将每个叶子节点视为一个堆,再将每个叶子节点与其父节点一起构造成一个包含更多节点的对。

所以,在构造堆的时候,首先需要找到最后一个节点的父节点,从这个节点开始构造最大堆;直到该节点前面所有分支节点都处理完毕,这样最大堆就构造完毕了。

假设树的节点个数为n,以1为下标开始编号,直到n结束。对于节点i,其父节点为i/2;左孩子节点为i*2,右孩子节点为i*2+1。最后一个节点的下标为n,其父节点的下标为n/2。

 

如下图所示,最后一个节点为7,其父节点为16,从16这个节点开始构造最大堆;构造完毕之后,转移到下一个父节点2,直到所有父节点都构造完毕。

技术分享图片

注意:上面构造最大堆的时候,从底而上,一层一层地不断基于父节点构造最大堆,直至到达根节点完成整个最大堆的构造;

代码如下:

//最大堆
//=======================================================================

#include <iostream>

using namespace std;

struct MaxHeap
{
    int *heap;  //数据元素的存放空间,下标从1开始存放元素,下标0存放临时数据
    int HeapSize;  //数据元素的个数
    int MaxSize;  //存放数据元素空间的大小
};

//初始化最大堆
void MaxHeapint(MaxHeap &H)  
{
    for (int i = H.HeapSize / 2; i > 0; i--)
    {
        H.heap[0] = H.heap[i];
        int son = i * 2;
        while (son <= H.HeapSize)
        {
            if (son < H.HeapSize && H.heap[son] < H.heap[son + 1])
                son++;
            if (H.heap[son] < H.heap[0])
                break;
            else
            {
                H.heap[son / 2] = H.heap[son];
                son *= 2;
            }
        }
        H.heap[son / 2] = H.heap[0];
    }
}

//最大堆中插入节点
//思想:先在堆的最后添加一个节点,然后沿着堆树上升。
void MaxHeapInsert(MaxHeap &H, int x)
{
    if (H.HeapSize == H.MaxSize)
        return;
    int i = ++H.HeapSize;
    while (i != 1 && x > H.heap[i / 2])
    {
        H.heap[i] = H.heap[i / 2];
        i = i / 2;
    }
    H.heap[i] = x;
}

//最大堆堆顶节点删除
//思想:将堆树的最后的节点提到根结点,然后删除最大值,然后再把新的根节点放到合适的位置。
void MaxHeapDelete(MaxHeap &H , int &top)
{
    int x;
    if (H.HeapSize == 0)
        return;
    top = H.heap[1];
    H.heap[0] = H.heap[H.HeapSize--];
    int i = 1, son = i * 2;
    while (son <= H.HeapSize)
    {
        if (son < H.HeapSize && H.heap[son] < H.heap[son + 1])
            son++;
        if (H.heap[0] >= H.heap[son])
            break;
        H.heap[i] = H.heap[son];
        i = son;
        son = son * 2;
    }
    H.heap[i] = H.heap[0];
    return;
}

int main(void)
{
    int top;
    int &top_1 = top;
    MaxHeap H;
    cout << "请输入数据的size: " << endl;
    cin >> H.HeapSize;
    H.heap = new int(H.HeapSize + 1);
    cout << "请按照完全二叉树输入数据:" << endl;
    for (int i = 0; i <= H.HeapSize; i++)
    {
        cin >> H.heap[i];  //我们这里默认H.heap[0]为临时数据,设为0
    }
    
    MaxHeapint(H);  //将二叉树转换为最大堆
    MaxHeapInsert(H, 3);
    MaxHeapDelete(H, top);

    for (int i = 1; i <= H.HeapSize; i++)
    {
        cout << H.heap[i] << "  ";
    }
    cout << endl << top;
    system("pause");
}

 

以上是关于最大堆和最小堆的主要内容,如果未能解决你的问题,请参考以下文章

最大堆和最小堆

二叉堆

堆排序 最大堆 最小堆 Java实现

数据结构:堆排序

最小堆最大堆了解吗?一文了解堆在前端中的应用

今天我们来谈谈堆