爬虫大作业

Posted xjh602545141

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了爬虫大作业相关的知识,希望对你有一定的参考价值。

通过爬游侠网的游戏资讯页面,获取新闻标题和作者,并对作者进行统计,网站

http://www.ali213.net/news/game/  


首先是要对网站发送请求
下面是我的代码
from urllib.parse import quote
import string


class htmlDownloader(object):

    def download(self, url):
        if url is None:
            return None
        s = quote(url, safe=string.printable)  # url里有中文需要添加这一句,不然乱码
        response = urllib.request.urlopen(s)

        if response.getcode() != 200:
            return None

        return response.read()  # 返回内容

  接着是要解析并得到目标URL,通过管理器进行操作,代码如下

# -*- coding:utf8 -*-

class UrlManage(object):
    def __init__(self):        
        self.detail_urls = set()  # 详细内容页的URL
        self.old_detail_urls = set()  # 已经爬取过的url

    def add_detail_url(self, url):
        if url is None:
            return
        if url not in self.detail_urls and url not in self.old_detail_urls:
            self.detail_urls.add(url)
            # print(self.detail_urls)

    # 添加多个url
    def add_new_detail_urls(self, urls):
        if urls is None or len(urls) == 0:
            return
        for url in urls:
            self.add_detail_url(url)


    def has_new_detail_url(self):
        return len(self.detail_urls) != 0

    def get_detail_url(self):
     new_detail_url = self.detail_urls.pop()
     self.old_detail_urls.add(new_detail_url)
     return new_detail_url

 观察游侠网游戏资讯的结构(如以下图片所示),构造相应的解析器 

技术分享图片

技术分享图片

第三页和第五页的差距只是index_后的数字差别,以此类推

技术分享图片

 

 需要注意的是 这里的第三条信息是广告来的,我的方法是通过计数器来跳过这个广告

# -*- coding:utf8 -*-
import re
from urllib.parse import urlparse
from bs4 import BeautifulSoup


class HtmlParser(object):
    def soup(cont):
        soups = BeautifulSoup(cont, ‘html.parser‘, from_encoding=‘utf-8‘)
        return soups

    # 得到具体的data数据
    def get_new_data(soup):
        dict = {}
        count = 0
        if (soup.select(‘.t5c_l‘)[0].contents):
            li = soup.select(‘.t5c_l‘)[0].select(‘.n_lone‘)
            di = {}
            for i in li:
                if(count==2):
                    print(‘我是广告‘)
                    count=count+1
                    continue
                moviename = i.select(‘h2‘)[0].select(‘a‘)[0].attrs[‘title‘]  # 游戏名
                print(moviename)
                comment = i.select(‘.lone_f‘)[0].select(‘.lone_f_r‘)[0].select(‘.lone_f_r_f‘)[0].text

                comment=comment.lstrip()
                comment=comment[9:].lstrip()

                # comment = re.findall(‘\\d+‘, comment)[0]
                # gametype=i.select(‘.tag2‘)[0].select(‘.a‘)[0].attrs[‘title‘]
                di[moviename] = comment
                print(moviename,di[moviename])
                count=count+1

            # di[‘gametype‘]=gametype

        if di:  # 返回的字典不为空的时候
         dict.update(di)

        return dict


    # 得到详细内容的url
    def get_detail_url(base_url):
        detail_urls = set()
        for k in range(1, 201):
            if (k == 1):
                urls = base_url
                # print(urls)
            else:
                urls = base_url + ‘index_{}.html‘.format(k)
                # print(urls)
            detail_urls.add(urls)
        return detail_urls

  把爬到的数据存为Excel格式

# -*- coding:utf8 -*-
import xlwt  # 写入Excel表的库


class HtmlOutputer(object):
    def __init__(self):
        self.datas = []

    def output_excel(self, dict):
        di = dict
        wbk = xlwt.Workbook(encoding=‘utf-8‘)
        sheet = wbk.add_sheet("wordCount")  # Excel单元格名字
        k = 0
        for i in di.items():
            sheet.write(k, 0, label=i[0])
            sheet.write(k, 1, label=i[1])
            k = k + 1
        wbk.save(‘wordCount.xls‘)  # 保存为 wordCount.xls文件 

  编写主类,代码如下

# -*- coding:utf8 -*-
from dazuoye import url_manager, html_downloader, html_parser, html_outputer


class SpiderMain(object):
    def __init__(self):
        self.urls = url_manager.UrlManage()
        self.downloader = html_downloader.HtmlDownloader()
        self.htmlparser = html_parser.HtmlParser
        self.outputer = html_outputer.HtmlOutputer()

    def craw(self, root_url):
        count = 1
        dictdata = {}
        try:
            detail_urls = self.htmlparser.get_detail_url(root_url)
            self.urls.add_new_detail_urls(detail_urls)
        except:
            print(‘craw failed‘)

        while self.urls.has_new_detail_url():
            try:
                detail_url = self.urls.get_detail_url()
                print(‘crow %d : %s‘ % (count, detail_url))

                html_cont = self.downloader.download(detail_url)

                soup = self.htmlparser.soup(html_cont)

                dict = self.htmlparser.get_new_data(soup)

                dictdata.update(dict)

                if count == 200:
                    break

                count = count + 1
            except:
                print(‘craw failed‘)

        self.outputer.output_excel(dictdata)

# 程序入口
if __name__ == "__main__":
    url = ‘http://www.ali213.net/news/game/‘
    obj_spider = SpiderMain()
    obj_spider.craw(url)

  运行主类,结果如下技术分享图片

然后再把作者存进列表,再通过字典统计词频,最后生成词云

# -*- coding:utf8 -*-
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import xlrd
from PIL import Image, ImageSequence
import numpy as np

file = xlrd.open_workbook(‘wordCount.xls‘)
sheet = file.sheet_by_name(‘wordCount‘)

list_li=[]
for i in range(sheet.nrows):
     rows = sheet.row_values(i)
     list_li.append(rows[1].rstrip(‘\\n‘))
list_di={}
for i in list_li:
    if list_li.count(i)>1:
        list_di[i]=list_li.count(i)
print(list_di)


image = Image.open(‘./005.jpg‘)
graph = np.array(image)

wc = WordCloud(font_path=‘./fonts/simhei.ttf‘, background_color=‘white‘, max_words=50, max_font_size=100,
               min_font_size=10,mask=graph,random_state=10)
wc.generate_from_frequencies(list_di)
plt.figure()
# 以下代码显示图片
plt.imshow(wc)
plt.axis("off")
plt.show()

  技术分享图片

技术分享图片

 

 如图所示(哈哈哈哈哈哈哈)

说说码代码的时候遇到的问题吧

就是解析数据的那里,因为有广告,所以经常报错,试过通过判断标签获得的数据是否为空来跳过此次循环  不过还是不行 最后另辟蹊跷,设计了一个计数器,当计数为2(即第三条)时跳过此次循环,

说起来也是因为网站固定第三条为广告,才能这样做的。

还有一个就是读取Excel转化为字典那里,本来想通过jieba的,不过发现我的方法更简单后就这样弄了

 

总的来说  此次大作业令我对Python兴趣大增,致使我觉得Python是世界上最好的语言!





以上是关于爬虫大作业的主要内容,如果未能解决你的问题,请参考以下文章

爬虫大作业

爬虫大作业

HTML5期末大作业:餐饮美食网站设计——咖啡(10页) HTML+CSS+JavaScript 学生DW网页设计作业成品 web课程设计网页规划与设计 咖啡网页设计 美食餐饮网页设计...(代码片段

Python大作业——爬虫+可视化+数据分析+数据库(可视化篇)

Python大作业——爬虫+可视化+数据分析+数据库(数据分析篇)

Python课程设计大作业:利用爬虫获取NBA比赛数据并进行机器学习预测NBA比赛结果