CMU Deep Learning 2018 by Bhiksha Raj 学习记录

Posted ecoflex

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了CMU Deep Learning 2018 by Bhiksha Raj 学习记录相关的知识,希望对你有一定的参考价值。

  • Recitation 2

  • numpy operations
    • array index
    • x = np.arange(10) ** 2
      # x:[ 0 1 4 9 16 25 36 49 64 81]
      print(x[::-1]) # all reversed
      print(x[8:1:-1]) # reversed slice
      print(x[::2]) # every other
      print(x[:]) # no-op (but useful syntax when dealing with n-d arrays)
      ---
      output:
      [81 64 49 36 25 16 9 4 1 0][64 49 36 25 16 9 4]
      [ 0 4 16 36 64][ 0 1 4 9 16 25 36 49 64 81]
    • simple syntax
    • # Simple syntax
      np.random.seed(123)
      x=np.random.random((10,))
      print(x)
      print(x>0.5)
      print(x[x>0.5])
      ---
      [ 0.69646919 0.28613933 0.22685145 0.55131477 0.71946897 0.42310646
      0.9807642 0.68482974 0.4809319 0.39211752][ True False False True True False True True False False]
      [ 0.69646919 0.55131477 0.71946897 0.9807642 0.68482974]
    • get diagonal elements
    • # Create a random matrix
      x = np.random.random((5,5))
      print(x)
      # Get diagonal elements
      print(np.diag(x))
    • save a single array
    • x = np.random.random((5,))
      np.save(‘temp.npy‘, x)
      y = np.load(‘temp.npy‘)
      print(y)
    • save dict of arrays
    • x1 = x = np.random.random((2,))
      y1 = x = np.random.random((2,))
      np.savez(‘temp.npy‘, x = x1, y = y1)
      data.np.load(‘temp.npy‘)
      print(data[‘x‘])
      print(data[‘y‘])
    • transpose
    • x=np.random.random((2,3))
      print(x)
      print(x.T) # simple transpose
      print(np.transpose(x, (1,0))) # syntax for multiple dimensions
      ---
      [[ 0.6919703 0.55438325 0.38895057][ 0.92513249 0.84167 0.35739757]][[ 0.6919703 0.92513249][ 0.55438325 0.84167 ]
      [ 0.38895057 0.35739757]]
      [[ 0.6919703 0.92513249][ 0.55438325 0.84167 ]
      [ 0.38895057 0.35739757]]
    • Add/remove a dim
    • # Special functions for adding and removing dims
      x=np.random.random((2,3,1))
      print(np.expand_dims(x, 1).shape) # add a new dimension
      print(np.squeeze(x,2).shape) # remove a dimension (must be size of 1)
      ---
      (2, 1, 3, 1)
      (2, 3)
  • Pytorch operation

import torch
import numpy as np
from torch.autograd import Variable

x = torch.FloatTensor(2,3)
print(x)
x.zero_()
print(x)

np.random.seed(123)
np_array = np.random.random((2,3))
print(torch.FloatTensor(np_array))
print(torch.from_numpy(np_array))

torch.manual_seed(123)
print(torch.randn(2,3))

print(torch.eye(3))
print(torch.ones(2,3))
print(torch.zeros(2,3))
print(torch.arange(0,3))

x = torch.FloatTensor(3,4)
print(x.size())
print(x.type())

x = torch.rand(3,2)
print(x)
y = x.cuda()
print(y)
z = y.cpu()
print(z)
print(z.numpy())

x = torch.rand(3,5).cuda()
y = torch.rand(5,4).cuda()
print(torch.mm(x,y))

print(x.new(1,2).zero_())

from timeit import timeit
x = torch.rand(1000,64)
y = torch.rand(64,32)
number = 10000

def square():
z = torch.mm(x,y)

print(‘CPU: {}ms‘.format(timeit(square,number = number)1000))
x,y = x.cuda(),y.cuda()
print(‘GPU: {}ms‘.format(timeit(square,number = number)
1000))

x = torch.arange(0,5)
print(torch.sum(x))
print(torch.sum(torch.exp(x)))
print(torch.mean(x))

x = torch.rand(3,2)
print(x)
print(x[1,:])

x = Variable(torch.arange(0,4),requires_grad = True)
y = torch.sum(x**2)
y.backward()
print(x)
print(y)
print(x.grad)

x = torch.rand(3,5)
y = torch.rand(5,4)
xv = Variable(x)
yv = Variable(y)
print(torch.mm(x,y))
print(torch.mm(xv,yv))

x = Variable(torch.arange(0,4),requires_grad = True)
torch.sum(x ** 2).backward()
print(x.grad)
torch.sum(x ** 2).backward()
print(x.grad)
x.grad.data.zero_()
torch.sum(x ** 2).backward()
print(x.grad)

net = torch.nn.Sequential(
torch.nn.Linear(28*28,256),
torch.nn.Sigmoid(),
torch.nn.Linear(256,10)
)
print(net.state_dict().keys())
print(net.state_dict())
torch.save(net.state_dict(),‘test.t7‘)
net.load_state_dict(torch.load(‘test.t7‘))

class MyNetwork(torch.nn.Module):
def init(self):
super().init()
self.layer1 = torch.nn.Linear(28*28,256),
self.layer2 = torch.nn.Sigmoid(),
self.layer3 = torch.nn.Linear(256,10)

def forward(self,input_val):
    h = input_val
    h = self.layer1(h)
    h = self.layer2(h)
    h = self.layer3(h)
    return h
    

net = MyNetwork()

以上是关于CMU Deep Learning 2018 by Bhiksha Raj 学习记录的主要内容,如果未能解决你的问题,请参考以下文章

CMU Deep Learning 2018 by Bhiksha Raj 学习记录

CMU Deep Learning 2018 by Bhiksha Raj 学习记录

CMU Deep Learning 2018 by Bhiksha Raj 学习记录(17)

CMU Deep Learning 2018 by Bhiksha Raj 学习记录(18)

CMU Deep Learning 2018 by Bhiksha Raj 学习记录(20) Recitation 8: Attention

2018 10-708 (CMU) Probabilistic Graphical Models {Lecture 21} [A Hybrid: Deep Learning and Graphical