计算几何常用算法总结

Posted Calm微笑

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了计算几何常用算法总结相关的知识,希望对你有一定的参考价值。

在微信中看到的,感觉挺不错,在这里贴一下

1、矢量减法

设二维矢量 P = (x1,y1) ,Q = (x2,y2)
则矢量减法定义为: P - Q = ( x1 - x2 , y1 - y2 )
显然有性质 P - Q = - ( Q - P )
如不加说明,下面所有的点都看作矢量,两点的减法就是矢量相减;

2、矢量叉积

设矢量P = (x1,y1) ,Q = (x2,y2)
则矢量叉积定义为: P × Q = x1*y2 - x2*y1   得到的是一个标量
显然有性质 P × Q = - ( Q × P )   P × ( - Q ) = - ( P × Q )
如不加说明,下面所有的点都看作矢量,点的乘法看作矢量叉积;
叉乘的重要性质:
> 若 P × Q > 0 , 则P 在Q的顺时针方向
> 若 P × Q < 0 , 则P 在Q的逆时针方向
> 若 P × Q = 0 , 则P 与Q共线,但可能同向也可能反向

3、判断点在线段上

设点为Q,线段为P1P2 ,判断点Q在该线段上的依据是:
( Q - P1 ) × ( P2 - P1 ) = 0 且 Q 在以 P1,P2为对角顶点的矩形内

4、判断两线段是否相交

我们分两步确定两条线段是否相交:


(1)快速排斥试验
设以线段 P1P2 为对角线的矩形为R, 设以线段 Q1Q2 为对角线的矩形为T,如果R和T不相
交,显然两线段不会相交;


(2)跨立试验
如果两线段相交,则两线段必然相互跨立对方,如图1所示。在图1中,P1P2跨立Q1Q2 ,则
矢量 ( P1 - Q1 ) 和( P2 - Q1 )位于矢量( Q2 - Q1 ) 的两侧,即
( P1 - Q1 ) × ( Q2 - Q1 ) * ( P2 - Q1 ) × ( Q2 - Q1 ) < 0
上式可改写成

( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) > 0
当 ( P1 - Q1 ) × ( Q2 - Q1 ) = 0 时,说明   ( P1 - Q1 ) 和 ( Q2 - Q1 )共线,


但是因为已经通过快速排斥试验,所以 P1 一定在线段 Q1Q2上;同理,( Q2 - Q1 ) ×(
P2 - Q1 ) = 0 说明 P2 一定在线段 Q1Q2上。

所以判断P1P2跨立Q1Q2的依据是:
( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) ≥ 0
 

同理判断Q1Q2跨立P1P2的依据是:
 ( Q1 - P1 ) × ( P2 - P1 ) * ( P2 - P1 ) × ( Q2 - P1 ) ≥ 0
至此已经完全解决判断线段是否相交的问题。

5、判断线段和直线是否相交

如果线段 P1P2和直线Q1Q2相交,则P1P2跨立Q1Q2,即:
 ( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) ≥ 0

6、判断矩形是否包含点

只要判断该点的横坐标和纵坐标是否夹在矩形的左右边和上下边之间。
判断线段、折线、多边形是否在矩形中
因为矩形是个凸集,所以只要判断所有端点是否都在矩形中就可以了。

6、判断矩形是否在矩形中

只要比较左右边界和上下边界就可以了。

7、判断圆是否在矩形中

圆在矩形中的充要条件是:圆心在矩形中且圆的半径小于等于圆心到矩形四边的距离的最
小值。

8、判断点是否在多边形中

以点P为端点,向左方作射线L,由于多边形是有界的,所以射线L的左端一定在多边形外,
考虑沿着L从无穷远处开始自左向右移动,遇到和多边形的第一个交点的时候,进入到了多
边形的内部,遇到第二个交点的时候,离开了多边形,……所以很容易看出当L和多边形的
交点数目C是奇数的时候,P在多边形内,是偶数的话P在多边形外。
但是有些特殊情况要加以考虑。如果L和多边形的顶点相交,有些情况下交点只能计算一个
,有些情况下交点不应被计算(你自己画个图就明白了);如果L和多边形的一条边重合,
这条边应该被忽略不计。为了统一起见,我们在计算射线L和多边形的交点的时候,1。对
于多边形的水平边不作考虑;2。对于多边形的顶点和L相交的情况,如果该顶点是其所属
的边上纵坐标较大的顶点,则计数,否则忽略;3。对于P在多边形边上的情形,直接可判
断P属于多边行。由此得出算法的伪代码如下:

1、count ← 0;
2、以P为端点,作从右向左的射线L;
3、for 多边形的每条边s
4、do if P在边s上
5、then return true;
6、if s不是水平的
7、then if s的一个端点在L上且该端点是s两端点中纵坐标较大的端点
9、then count ← count+1
10、else if s和L相交
11、then count ← count+1;
12i、f count mod 2 = 1
13、then return true
14、else return false;

其中做射线L的方法是:设P‘的纵坐标和P相同,横坐标为正无穷大(很大的一个正数),
则P和P‘就确定了射线L。这个算法的复杂度为O(n)。

9、判断线段是否在多边形内

线段在多边形内的一个必要条件是线段的两个端点都在多边形内;


如果线段和多边形的某条边内交(两线段内交是指两线段相交且交点不在两线段的端点)

,因为多边形的边的左右两侧分属多边形内外不同部分,所以线段一定会有一部分在多边
形外。于是我们得到线段在多边形内的第二个必要条件:线段和多边形的所有边都不内交


线段和多边形交于线段的两端点并不会影响线段是否在多边形内;但是如果多边形的某个

顶点和线段相交,还必须判断两相邻交点之间的线段是否包含与多边形内部。因此我们可
以先求出所有和线段相交的多边形的顶点,然后按照X-Y坐标排序,这样相邻的两个点就是
在线段上相邻的两交点,如果任意相邻两点的中点也在多边形内,则该线段一定在多边形
内。证明如下:


命题1:

如果线段和多边形的两相邻交点P1 ,P2的中点P‘ 也在多边形内,则P1, P2之间的所有点
都在多边形内。


证明:

假设P1,P2之间含有不在多边形内的点,不妨设该点为Q,在P1, P‘之间,因为多边形是闭
合曲线,所以其内外部之间有界,而P1属于多边行内部,Q属于多边性外部,P‘属于多边性
内部,P1-Q-P‘完全连续,所以P1Q和QP‘一定跨越多边形的边界,因此在P1,P‘之间至少还
有两个该线段和多边形的交点,这和P1P2是相邻两交点矛盾,故命题成立。证毕
由命题1直接可得出推论:


推论2:

设多边形和线段PQ的交点依次为P1,P2,……Pn,其中Pi和Pi+1是相邻两交点,线段PQ在多
边形内的充要条件是:P,Q在多边形内且对于i =1, 2,……, n-1,Pi ,Pi+1的中点也在多
边形内。

在实际编程中,没有必要计算所有的交点,首先应判断线段和多边形的边是否内交,倘若
线段和多边形的某条边内交则线段一定在多边形外;如果线段和多边形的每一条边都不内
交,则线段和多边形的交点一定是线段的端点或者多边形的顶点,只要判断点是否在线段
上就可以了。


至此我们得出算法如下:

1、f 线端PQ的端点不都在多边形内
2、hen return false;
3、点集pointSet初始化为空;
4、for 多边形的每条边s
5、do if 线段的某个端点在s上
6、then 将该端点加入pointSet;
7、else if s的某个端点在线段PQ上
8、then 将该端点加入pointSet;
9、else if s和线段PQ相交           // 这时候可以肯定是内交
10、 then return false;
11、将pointSet中的点按照X-Y坐标排序,X坐标小的排在前面,对于X坐标相同的点,Y坐
标小的排在前面;
12、for pointSet中每两个相邻点 pointSet[i] , pointSet[ i+1]
13、do if pointSet[i] , pointSet[ i+1] 的中点不在多边形中
14、then return false;
15、return true;

这个算法的复杂度也是O(n)。其中的排序因为交点数目肯定远小于多边形的顶点数目n,所
以最多是常数级的复杂度,几乎可以忽略不计。

10、判断折线在多边形内

只要判断折线的每条线段是否都在多边形内即可。设折线有m条线段,多边形有n个顶点,
则复杂度为O(m*n)。

11、判断多边形是否在多边形内
只要判断多边形的每条边是否都在多边形内即可。判断一个有m个顶点的多边形是否在一个
有n个顶点的多边形内复杂度为O(m*n)。

12、判断矩形是否在多边形内

将矩形转化为多边形,然后再判断是否在多边形内。

13、判断圆是否在多边形内

只要计算圆心到多边形的每条边的最短距离,如果该距离大于等于圆半径则该圆在多边形
内。计算圆心到多边形每条边最短距离的算法在后文阐述。

14、判断点是否在圆内

计算圆心到该点的距离,如果小于等于半径则该点在圆内。

15、判断线段、折线、矩形、多边形是否在圆内

因为圆是凸集,所以只要判断是否每个顶点都在圆内即可。

16、判断圆是否在圆内

设两圆为O1,O2,半径分别为r1, r2,要判断O2是否在O1内。先比较r1,r2的大小,如果r
1<r2则O2不可能在O1内;否则如果两圆心的距离大于r1 - r2 ,则O2不在O1内;否则O2在
O1内。

17、计算点到线段的最近点

如果该线段平行于X轴(Y轴),则过点point作该线段所在直线的垂线,垂足很容易求得,
然后计算出垂足,如果垂足在线段上则返回垂足,否则返回离垂足近的端点;
如果该线段不平行于X轴也不平行于Y轴,则斜率存在且不为0。设线段的两端点为pt1和pt
2,斜率为:
k = ( pt2.y - pt1. y ) / (pt2.x - pt1.x );
该直线方程为:
y = k* ( x - pt1.x) + pt1.y
其垂线的斜率为 - 1 / k,
垂线方程为:
y = (-1/k) * (x - point.x) + point.y
联立两直线方程解得:
x = ( k^2 * pt1.x + k * (point.y - pt1.y ) + point.x ) / ( k^2 + 1)
y = k * ( x - pt1.x) + pt1.y;
然后再判断垂足是否在线段上,如果在线段上则返回垂足;如果不在则计算两端点到垂足
的距离,选择距离垂足较近的端点返回。

18、计算点到折线、矩形、多边形的最近点

只要分别计算点到每条线段的最近点,记录最近距离,取其中最近距离最小的点即可。

19、计算点到圆的最近距离


如果该点在圆心,则返回UNDEFINED

连接点P和圆心O,如果PO平行于X轴,则根据P在O的左边还是右边计算出最近点的横坐标为
centerPoint.x - radius 或 centerPoint.x + radius, 如图4 (a)所示;如果如果PO平
行于Y轴,则根据P在O的上边还是下边计算出最近点的纵坐标为 centerPoint.y -+radius
或 centerPoint.y - radius, 如图4 (b)所示。
如果PO不平行于X轴和Y轴,则PO的斜率存在且不为0,如图4(c)所示。这时直线PO斜率为

k = ( P.y - O.y )/ ( P.x - O.x )
直线PO的方程为:
y = k * ( x - P.x) + P.y
设圆方程为:
(x - O.x ) ^2 + ( y - O.y ) ^2 = r ^2,
联立两方程组可以解出直线PO和圆的交点,取其中离P点较近的交点即可。

20、计算两条共线的线段的交点

对于两条共线的线段,它们之间的位置关系有图5所示的几种情况。
图5(a)中两条线段没有交点;图5 (b) 和 (d) 中两条线段有无穷焦点;图5 (c) 中两条线
段有一个交点。设line1是两条线段中较长的一条,line2是较短的一条,如果line1包含了
line2的两个端点,则是图5(d)的情况,两线段有无穷交点;如果line1只包含line2的一个
端点,那么如果line1的某个端点等于被line1包含的line2的那个端点,则是图5(c)的情况
,这时两线段只有一个交点,否则就是图5(c)的情况,两线段也是有无穷的交点;如果li
ne1不包含line2的任何端点,则是图5(a)的情况,这时两线段没有交点。

21、计算线段或直线与线段的交点


设一条线段为L0 = P1P2,另一条线段或直线为L1 = Q1Q2 ,要计算的就是L0和L1的交点。


1、首先判断L0和L1是否相交(方法已在前文讨论过),如果不相交则没有交点,否则说
明L0和L1一定有交点,下面就将L0和L1都看作直线来考虑。


2、如果P1和P2横坐标相同,即L0平行于Y轴

a) 若L1也平行于Y轴,
i. 若P1的纵坐标和Q1的纵坐标相同,说明L0和L1共线,假如L1是直线的话他们有无穷的交
点,假如L1是线段的话可用"计算两条共线线段的交点"的算法求他们的交点(该方法在前
文已讨论过);
ii. 否则说明L0和L1平行,他们没有交点;
b) 若L1不平行于Y轴,则交点横坐标为P1的横坐标,代入到L1的直线方程中可以计算出交
点纵坐标;


3、如果P1和P2横坐标不同,但是Q1和Q2横坐标相同,即L1平行于Y轴,则交点横坐标为Q

1的横坐标,代入到L0的直线方程中可以计算出交点纵坐标;


4、如果P1和P2纵坐标相同,即L0平行于X轴

以上是关于计算几何常用算法总结的主要内容,如果未能解决你的问题,请参考以下文章

计算几何算法概览 (转)

计算几何--凸包总结

干货计算几何常用算法

计算几何常用算法,ACM竞赛必备~

计算几何——凸包问题

计算几何——凸包问题