将查询离线处理,依照r排序,然后从左向右处理每一个A[i],碰到查询时处理。用线段树维护。每一个节点表示从[l,i]中以l为起始的区间gcd总和。所以每次改动时须要处理[1,i-1]与i的gcd值。可是由于gcd值是递减的,成log级,对于每一个gcd值记录其区间就可以。然后用线段树段改动,可是是改动一个等差数列。
#include <cstdio> #include <cstring> #include <vector> #include <algorithm> using namespace std; typedef long long ll; const int maxn = 1e4 + 5; #define lson(x) (x<<1) #define rson(x) ((x<<1)|1) namespace SegTree { int lc[maxn << 2], rc[maxn << 2]; ll A[maxn << 2], D[maxn << 2], S[maxn << 2]; void maintain (int u, ll a, ll d) { A[u] += a; D[u] += d; int n = rc[u] - lc[u] + 1; S[u] += a * n + d * (n-1) * n / 2; } void pushup(int u) { S[u] = S[lson(u)] + S[rson(u)]; } void pushdown (int u) { if (A[u] || D[u]) { int mid = ((lc[u] + rc[u]) >> 1) + 1; maintain(lson(u), A[u], D[u]); maintain(rson(u), A[u] + (mid - lc[u]) * D[u], D[u]); A[u] = D[u] = 0; } } void build (int u, int l, int r) { lc[u] = l; rc[u] = r; A[u] = D[u] = S[u] = 0; if (l == r) { return; } int mid = (l + r) >> 1; build (lson(u), l, mid); build (rson(u), mid + 1, r); pushup(u); } void modify (int u, int l, int r, ll a, ll d) { if (l <= lc[u] && rc[u] <= r) { maintain(u, a + (lc[u] - l) * d, d); return; } pushdown(u); int mid = (lc[u] + rc[u]) >> 1; if (l <= mid) modify(lson(u), l, r, a, d); if (r > mid) modify(rson(u), l, r, a, d); pushup(u); } ll query (int u, int l, int r) { if (l <= lc[u] && rc[u] <= r) return S[u]; pushdown(u); ll ret = 0; int mid = (lc[u] + rc[u]) >> 1; if (l <= mid) ret += query(lson(u), l, r); if (r > mid) ret += query(rson(u), l, r); return ret; } }; int gcd (int a, int b) { return b == 0 ?a : gcd(b, a%b); } struct State { int l, r, idx; State (int l = 0, int r = 0, int idx = 0): l(l), r(r), idx(idx) {} bool operator < (const State& u) const { return r < u.r; } }S[maxn], G[maxn]; int N, Q, A[maxn]; ll R[maxn]; void init () { scanf("%d", &N); for (int i = 1; i <= N; i++) scanf("%d", &A[i]); scanf("%d", &Q); for (int i = 1; i <= Q; i++) { scanf("%d%d", &S[i].l, &S[i].r); S[i].idx = i; } sort(S + 1, S + 1 + Q); SegTree::build(1, 1, N); } void solve () { int n = 0, p = 1; for (int i = 1; i <= N; i++) { for (int j = 0; j < n; j++) G[j].idx = gcd(G[j].idx, A[i]); G[n++] = State(i, i, A[i]); int mv = 0; for (int j = 1; j < n; j++) { if (G[mv].idx == G[j].idx) G[mv] = State(G[mv].l, G[j].r, G[j].idx); else G[++mv] = G[j]; } n = mv + 1; //printf("%d:%d\n", i, n); for (int i = 0; i < n; i++) { // printf("%d %d %d\n", G[i].l, G[i].r, G[i].idx); int k = G[i].r - G[i].l + 1; SegTree::modify(1, G[i].l, G[i].r, 1LL * G[i].idx * k, -G[i].idx); if (G[i].l > 1) SegTree::modify(1, 1, G[i].l - 1, 1LL * G[i].idx * k, 0); } while (p <= N && S[p].r == i) { R[S[p].idx] = SegTree::query(1, S[p].l, S[p].l); p++; } } } int main () { int cas; scanf("%d", &cas); while (cas--) { init (); solve (); for (int i = 1; i <= Q; i++) printf("%lld\n", R[i]); } return 0; }