题目大意:
有一个3*M的网格图,初始你在(2,1),你要去(2,m),途中有一些格子被堵住了。对于每一群堵住的格子,有三个参数ai,li,ri,表示第ai(1 <= ai <= 3)行的第li至ri个格子被堵住了。问你总的路径条数,mod1e9+7
Solution:
如果没有堵住的格子,那就是一个很simple的矩阵快速幂
有了堵住的格子,我们考虑从左往右扫描线,对每一个区间分别快速幂就好了。
略微有一点细节,具体细节可以看代码
1A还是很令人开心的(虽然感觉这题没有F难度)
#include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int mod = 1e9 + 7; struct matrix { int n,m; int s[4][4]; operator =(matrix a) { n = a.n;m = a.m; for(int i = 1;i <= n;i++){ for(int j = 1;j <= m;j++){ s[i][j] = a.s[i][j]; } } } matrix(){ memset(s,0,sizeof(s)); } }; matrix operator*(matrix a,matrix b) { matrix c; c.n = a.n;c.m = b.m; for(int i = 1;i <= c.n;i++){ for(int j = 1;j <= c.m;j++){ for(int k = 1;k <= a.m;k++){ c.s[i][j] = ((long long)c.s[i][j] + (long long)a.s[i][k] * b.s[k][j]) % mod; } } } return c; } struct event { int t; long long pos; bool op; }E[200005]; int n; long long m; int cnt = 0; bool cmp(event a,event b) { return a.pos < b.pos; } matrix pow(matrix a,long long b) { matrix ans;ans.n = ans.m = 3; ans.s[1][1] = ans.s[2][2] = ans.s[3][3] = 1; matrix temp = a; while(b){ if(b&1) ans = ans * temp; temp = temp * temp; b>>=1; } return ans; } int main() { scanf("%d%I64d",&n,&m); for(int i = 1;i <= n;i++){ int a; long long l,r; scanf("%d%I64d%I64d",&a,&l,&r); E[++cnt].t = a;E[cnt].pos = l;E[cnt].op = 0; E[++cnt].t = a;E[cnt].pos = r+1;E[cnt].op = 1; } sort(E+1,E+cnt+1,cmp); matrix ans;ans.n = 1;ans.m = 3; ans.s[1][1] = 0;ans.s[1][2] = 1;ans.s[1][3] = 0; matrix temp;temp.n = 3;temp.m = 3; temp.s[1][1] = 1;temp.s[1][2] = 1;temp.s[2][1] = 1;temp.s[2][2] = 1;temp.s[2][3] = 1;temp.s[3][2] = 1;temp.s[3][3] = 1; long long last = 1; int c[4] = {0,1,1,1}; for(int i = 1;i <= cnt && E[i].pos <= m;i++){ if(E[i].pos != last){ ans = ans * pow(temp , E[i].pos - last); last = E[i].pos; } int f = c[E[i].t]; c[E[i].t] += (E[i].op ? 1 : -1); if(f == 0 || c[E[i].t] == 0){ for(int j = 1;j <= 3;j++) temp.s[E[i].t][j] = c[E[i].t] > 0 ? 1 : 0; if(E[i].t == 1) temp.s[1][3] = 0; if(E[i].t == 3) temp.s[3][1] = 0; } } if(last != m) ans = ans * pow(temp , m - last); printf("%d\n",ans.s[1][2]); return 0; }