李宏毅机器学习 - 0 Introduction

Posted aintro

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了李宏毅机器学习 - 0 Introduction相关的知识,希望对你有一定的参考价值。

ML Lecture 0: Introduction of Machine Learning

  1. AI v.s. ML v.s. DL
    • Artificial intelligence -> objective
    • Machine learning -> methods
    • Deep learning -> one method of machine learning
  2. Hand-crafted rules
    • many "ifs"
    • hard to consider all possibilities
    • no learning (limited)
    • lots of human efforts (not suitable for small industry)
  3. Machine learning
    • write programs for learning
    • looking for a function from data
      • 1. defining a set of functions -> model
      • 2. training data -> evaluate the goodness of functions (supervised learning)
      • 3. picking the best function f star
      • 4. using f star
    • 1-3 -> traing 4 -> testing
  4. Learning map
    • 技术分享图片
  5. Regression (output: scalar/value/real number)
    • e.g. prediction of PM2.5
  6. Classification  
    • binary classification (e.g. spam filtering)
    • multi-class classification (e.g. document classification)
  7. Supervised learning
    • training data: input / output pair of target function (function output -> label)
    • hard to collect a large amount of labelled data -> semi-supervised learning / tramsfer learning / unsuperviesd learning / reinforcement learning
  8. Structured learning - beyond classification
    • e.g. speech recognition / machine translation
  9. Reinforcement learning
    • no correct answers but only critics (评价)

以上是关于李宏毅机器学习 - 0 Introduction的主要内容,如果未能解决你的问题,请参考以下文章

知识索引李宏毅机器学习

李宏毅机器学习|图神经网络Graph Nerual Networks(GNN)|学习笔记-part1

李宏毅机器学习|图神经网络Graph Nerual Networks(GNN)|学习笔记-part1

李宏毅《机器学习》国语课程(2022)来了

李宏毅《机器学习》丨7. Conclusion(总结)

李宏毅机器学习2021卷积神经网络HW3-Image Classification(更新ing)