02填空题

Posted passion27

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了02填空题相关的知识,希望对你有一定的参考价值。

题目描述:

最大公共子串长度问题就是:

求两个串的所有子串中能够匹配上的最大长度是多少。
比如:"abcdkkk" 和 "baabcdadabc",
可以找到的最长的公共子串是"abcd",所以最大公共子串长度为4。
下面的程序是采用矩阵法进行求解的,这对串的规模不大的情况还是比较有效的解法。
请分析该解法的思路,并补全划线部分缺失的代码。

 

注意:只提交缺少的代码,不要提交已有的代码和符号。也不要提交说明性文字。

#include <stdio.h>  
#include <string.h>  
  
#define N 256  
int f(const char* s1, const char* s2)  
{  
    int a[N][N];  
    int len1 = strlen(s1);  
    int len2 = strlen(s2);  
    int i,j;  
      
    memset(a,0,sizeof(int)*N*N);  
    int max = 0;  
    for(i=1; i<=len1; i++){  
        for(j=1; j<=len2; j++){  
            if(s1[i-1]==s2[j-1]) {  
                a[i][j] = __________________________;  //填空  
                if(a[i][j] > max) max = a[i][j];  
            }  
        }  
    }  
      
    return max;  
}  
  
int main()  
{  
    printf("%d\n", f("abcdkkk", "baabcdadabc"));  
    return 0;  
}  

  

题目答案:

a[i-1][j-1]+1

题目思路:

动态规划的思想,a[i][j]表示到字符串s1的i位置和s2的j位置的最大公共子串的长度 ,数组初始化为0。为了方便理解,我们这么想,如果s1的字符串的第一个字符和s2的第一个字符相同,那么a[1][1] = 1;如果两个字符串的第二个字符和相同,那么,到第二个位置的最长公共子串就等于1+1 = 2,也就是到第一个字符的公共子串的个数+1。即a[i][j] = 1+ a[i-1][j-1]。因此,我们可以从第一个位置开始递推求出到任意一个位置的公共子串,在递推过程中记录最大的结果即可。

以上是关于02填空题的主要内容,如果未能解决你的问题,请参考以下文章

WPF,制作填空题

anki填空卡正确代码

算法笔记_116:算法集训之代码填空题集三(Java)

LQ0192 神奇算式填空题

填空题答题工具

填空题答题工具