Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 9078 | Accepted: 3515 |
Description
The manager has provided you with the least number of cashiers needed for every one-hour slot of the day. This data is given as R(0), R(1), ..., R(23): R(0) represents the least number of cashiers needed from midnight to 1:00 A.M., R(1) shows this number for duration of 1:00 A.M. to 2:00 A.M., and so on. Note that these numbers are the same every day. There are N qualified applicants for this job. Each applicant i works non-stop once each 24 hours in a shift of exactly 8 hours starting from a specified hour, say ti (0 <= ti <= 23), exactly from the start of the hour mentioned. That is, if the ith applicant is hired, he/she will work starting from ti o‘clock sharp for 8 hours. Cashiers do not replace one another and work exactly as scheduled, and there are enough cash registers and counters for those who are hired.
You are to write a program to read the R(i) ‘s for i=0..23 and ti ‘s for i=1..N that are all, non-negative integer numbers and compute the least number of cashiers needed to be employed to meet the mentioned constraints. Note that there can be more cashiers than the least number needed for a specific slot.
Input
Output
If there is no solution for the test case, you should write No Solution for that case.
Sample Input
1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 0 23 22 1 10
Sample Output
1
Source
题意:
在一家超市里,每个时刻都需要有营业员看管,R(i) (0 <= i < 24)表示从i时刻开始到i+1时刻结束需要的营业员的数目,现在有N(N <= 1000)个申请人申请这项工作,并且每个申请者都有一个起始工作时间 ti,如果第i个申请者被录用,那么他会从ti时刻开始连续工作8小时。现在要求选择一些申请者进行录用,使得任何一个时刻i,营业员数目都能大于等于R(i)。求出至少需要录用多少营业员。
我们用$S[i]$表示一天内前$i+1$个小时录用的人员,
当$i>=7$时,我们需要满足$s[i]-s[i-8]>=R[i]$
当$0<=i<7$,经过推倒不难发现,我们需要满足$s[i]+s[23]-s[i+16]>=R[i]$
同时,因为题目中人数的限制,我们还需要满足$0<=s[i]-s[i-1]<=b[i]$
这样这道题就看起来可做了
但是我们的第二个式子左边有三项,不过还好$s[23]$是个常数项,我们可以二分解决
因为是求最小,所以我们按照套路连边,求最长路
#include<cstdio> #include<queue> #include<cstring> #define INF 1e8+10 using namespace std; const int MAXN=1e5+10; #define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,MAXN,stdin),p1==p2)?EOF:*p1++) char buf[MAXN],*p1=buf,*p2=buf; inline int read() { char c=getchar();int x=0,f=1; while(c<‘0‘||c>‘9‘){if(c==‘-‘)f=-1;c=getchar();} while(c>=‘0‘&&c<=‘9‘){x=x*10+c-‘0‘;c=getchar();} return x*f; } int R[MAXN],N,pep[MAXN],dis[MAXN],vis[MAXN]; struct node { int u,v,w,nxt; }edge[MAXN]; int head[MAXN],num=1; inline void AddEdge(int x,int y,int z) { edge[num].u=x; edge[num].v=y; edge[num].w=z; edge[num].nxt=head[x]; head[x]=num++; } void PRE() { memset(head,-1,sizeof(head)); memset(vis,0,sizeof(vis)); num=1; } int SPFA(int val) { memset(dis,-0x7f,sizeof(dis)); queue<int>q; dis[0]=0; q.push(0); while(q.size()!=0) { int p=q.front();q.pop(); vis[p]=0; if(p==24&&dis[p]>val) return 0; for(int i=head[p];i!=-1;i=edge[i].nxt) { if(dis[edge[i].v]<dis[p]+edge[i].w) { dis[edge[i].v]=dis[p]+edge[i].w; if(!vis[edge[i].v]) vis[edge[i].v]=1,q.push(edge[i].v); } } } return dis[24]<=val?1:0; } int main() { #ifdef WIN32 freopen("a.in","r",stdin); #else #endif int QWQ=read(); while(QWQ--) { memset(pep,0,sizeof(pep)); for(int i=0;i<=23;i++) R[i]=read(); N=read(); for(int i=1;i<=N;i++) pep[read()]++; int r=N+1,l=0; int ans=INF; while(l<=r) { PRE(); int mid=l+r>>1; for(int i=0;i<=23;i++) AddEdge(i,i+1,0),AddEdge(i+1,i,-pep[i]); for(int i=7;i<=23;i++) AddEdge(i-7,i+1,R[i]); AddEdge(0,24,mid);AddEdge(24,0,-mid); for(int i=0;i<7;i++) AddEdge(i+17,i+1,R[i]-mid); if(SPFA(mid)) ans=mid,r=mid-1; else l=mid+1; } if(ans>N) printf("No Solution\n"); else printf("%d\n",ans); } return 0; }