Binder学习笔记—— ServiceManager如何响应checkService请求
Posted 晋文
tags:
篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了Binder学习笔记—— ServiceManager如何响应checkService请求相关的知识,希望对你有一定的参考价值。
这要从frameworks/native/cmds/servicemanager/service_manager.c:347的main函数说起,该文件编译后生成servicemanager。
int main(int argc, char **argv)
{
struct binder_state *bs;
bs = binder_open(128*1024); // 打开/dev/binder文件,并映射到内存
if (!bs) {
ALOGE("failed to open binder driver\n");
return -1;
}
//向/dev/binder写入BINDER_SET_CONTEXT_MGR命令
if (binder_become_context_manager(bs)) {
ALOGE("cannot become context manager (%s)\n", strerror(errno));
return -1;
}
selinux_enabled = is_selinux_enabled();
sehandle = selinux_android_service_context_handle();
selinux_status_open(true);
if (selinux_enabled > 0) {
if (sehandle == NULL) {
ALOGE("SELinux: Failed to acquire sehandle. Aborting.\n");
abort();
}
if (getcon(&service_manager_context) != 0) {
ALOGE("SELinux: Failed to acquire service_manager context. Aborting.\n");
abort();
}
}
union selinux_callback cb;
cb.func_audit = audit_callback;
selinux_set_callback(SELINUX_CB_AUDIT, cb);
cb.func_log = selinux_log_callback;
selinux_set_callback(SELINUX_CB_LOG, cb);
binder_loop(bs, svcmgr_handler);
return 0;
}
接下来遇到se_xxx相关的数据结构和函数,未来我们还会遇到。他们是Android系统提供的安全机制,负责管理对资源的安全访问控制,通常只是回答某个资源是否有权限访问,而不会干涉业务逻辑,因此我们可以完全忽略。重点在binder_loop(…),如下:
frameworks/native/cmds/servicemanager/binder.c:372
void binder_loop(struct binder_state *bs, binder_handler func)
{
int res;
struct binder_write_read bwr;
uint32_t readbuf[32];
bwr.write_size = 0;
bwr.write_consumed = 0;
bwr.write_buffer = 0;
readbuf[0] = BC_ENTER_LOOPER;
binder_write(bs, readbuf, sizeof(uint32_t));
for (;;) {
bwr.read_size = sizeof(readbuf);
bwr.read_consumed = 0;
bwr.read_buffer = (uintptr_t) readbuf;
res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr);
if (res < 0) {
ALOGE("binder_loop: ioctl failed (%s)\n", strerror(errno));
break;
}
res = binder_parse(bs, 0, (uintptr_t) readbuf, bwr.read_consumed, func);
if (res == 0) {
ALOGE("binder_loop: unexpected reply?!\n");
break;
}
if (res < 0) {
ALOGE("binder_loop: io error %d %s\n", res, strerror(errno));
break;
}
}
}
它循环向/dev/binder读写内容,然后对读到的数据做解析,再深入binder_parse(…)
frameworks/native/cmds/servicemanager/binder.c:204
int binder_parse(struct binder_state *bs, struct binder_io *bio,
uintptr_t ptr, size_t size, binder_handler func)
{
int r = 1;
uintptr_t end = ptr + (uintptr_t) size;
while (ptr < end) {
uint32_t cmd = *(uint32_t *) ptr;
ptr += sizeof(uint32_t);
#if TRACE
fprintf(stderr,"%s:\n", cmd_name(cmd));
#endif
switch(cmd) {
case BR_NOOP:
break;
case BR_TRANSACTION_COMPLETE:
break;
case BR_INCREFS:
case BR_ACQUIRE:
case BR_RELEASE:
case BR_DECREFS:
#if TRACE
fprintf(stderr," %p, %p\n", (void *)ptr, (void *)(ptr + sizeof(void *)));
#endif
ptr += sizeof(struct binder_ptr_cookie);
break;
case BR_TRANSACTION: {
struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr;
if ((end - ptr) < sizeof(*txn)) {
ALOGE("parse: txn too small!\n");
return -1;
}
binder_dump_txn(txn);
if (func) {
unsigned rdata[256/4];
struct binder_io msg;
struct binder_io reply;
int res;
bio_init(&reply, rdata, sizeof(rdata), 4);
bio_init_from_txn(&msg, txn);
res = func(bs, txn, &msg, &reply);
binder_send_reply(bs, &reply, txn->data.ptr.buffer, res);
}
ptr += sizeof(*txn);
break;
}
case BR_REPLY: {
struct binder_transaction_data *txn = (struct binder_transaction_data *) ptr;
if ((end - ptr) < sizeof(*txn)) {
ALOGE("parse: reply too small!\n");
return -1;
}
binder_dump_txn(txn);
if (bio) {
bio_init_from_txn(bio, txn);
bio = 0;
} else {
/* todo FREE BUFFER */
}
ptr += sizeof(*txn);
r = 0;
break;
}
case BR_DEAD_BINDER: {
struct binder_death *death = (struct binder_death *)(uintptr_t) *(binder_uintptr_t *)ptr;
ptr += sizeof(binder_uintptr_t);
death->func(bs, death->ptr);
break;
}
case BR_FAILED_REPLY:
r = -1;
break;
case BR_DEAD_REPLY:
r = -1;
break;
default:
ALOGE("parse: OOPS %d\n", cmd);
return -1;
}
}
return r;
}
重点在case BR_TRANSACTION里,它接收到的txn正是客户端发出的tr。首先初始化好reply数据结构
然后初始化msg,其中蓝色部分是客户端组织的数据,红色部分是ServiceManager端组织的数据:
接下来执行func(…),这是一个函数指针,通过参数传进来,向上追溯binder_loop(…) – main(…)找到该函数指针的实参是svcmgr_handler
frameworks/native/cmds/servicemanager/service_manager.c:244
int svcmgr_handler(struct binder_state *bs,
struct binder_transaction_data *txn,
struct binder_io *msg,
struct binder_io *reply)
{
struct svcinfo *si;
uint16_t *s;
size_t len;
uint32_t handle;
uint32_t strict_policy;
int allow_isolated;
//ALOGI("target=%p code=%d pid=%d uid=%d\n",
// (void*) txn->target.ptr, txn->code, txn->sender_pid, txn->sender_euid);
if (txn->target.ptr != BINDER_SERVICE_MANAGER)
return -1;
if (txn->code == PING_TRANSACTION)
return 0;
// Equivalent to Parcel::enforceInterface(), reading the RPC
// header with the strict mode policy mask and the interface name.
// Note that we ignore the strict_policy and don‘t propagate it
// further (since we do no outbound RPCs anyway).
// 从客户端发来的Parcel数据中取出InterfaceToken
strict_policy = bio_get_uint32(msg);
s = bio_get_string16(msg, &len);
if (s == NULL) {
return -1;
}
// svcmgr_id就是android.os.IserviceManager,定义在service_manager.c:164
if ((len != (sizeof(svcmgr_id) / 2)) ||
memcmp(svcmgr_id, s, sizeof(svcmgr_id))) {
fprintf(stderr,"invalid id %s\n", str8(s, len));
return -1;
}
if (sehandle && selinux_status_updated() > 0) {
struct selabel_handle *tmp_sehandle = selinux_android_service_context_handle();
if (tmp_sehandle) {
selabel_close(sehandle);
sehandle = tmp_sehandle;
}
}
switch(txn->code) {
case SVC_MGR_GET_SERVICE:
case SVC_MGR_CHECK_SERVICE:
s = bio_get_string16(msg, &len); // 取出Parcel中的"service.testservice"字串
if (s == NULL) {
return -1;
}
handle = do_find_service(bs, s, len, txn->sender_euid, txn->sender_pid);
if (!handle)
break;
bio_put_ref(reply, handle);
return 0;
case SVC_MGR_ADD_SERVICE:
s = bio_get_string16(msg, &len);
if (s == NULL) {
return -1;
}
handle = bio_get_ref(msg);
allow_isolated = bio_get_uint32(msg) ? 1 : 0;
if (do_add_service(bs, s, len, handle, txn->sender_euid,
allow_isolated, txn->sender_pid))
return -1;
break;
case SVC_MGR_LIST_SERVICES: {
uint32_t n = bio_get_uint32(msg);
if (!svc_can_list(txn->sender_pid)) {
ALOGE("list_service() uid=%d - PERMISSION DENIED\n",
txn->sender_euid);
return -1;
}
si = svclist;
while ((n-- > 0) && si)
si = si->next;
if (si) {
bio_put_string16(reply, si->name);
return 0;
}
return -1;
}
default:
ALOGE("unknown code %d\n", txn->code);
return -1;
}
bio_put_uint32(reply, 0);
return 0;
}
继续找do_find_service(…),frameworks/native/cmds/servicemanager/service_manager.c:170
uint32_t do_find_service(struct binder_state *bs, const uint16_t *s, size_t len, uid_t uid, pid_t spid)
{
struct svcinfo *si = find_svc(s, len); // 重点在这里
if (!si || !si->handle) {
return 0;
}
if (!si->allow_isolated) {
// If this service doesn‘t allow access from isolated processes,
// then check the uid to see if it is isolated.
uid_t appid = uid % AID_USER;
if (appid >= AID_ISOLATED_START && appid <= AID_ISOLATED_END) {
return 0;
}
}
if (!svc_can_find(s, len, spid)) {
return 0;
}
return si->handle;
}
再到frameworks/native/cmds/servicemanager/service_manager.c:140
struct svcinfo *find_svc(const uint16_t *s16, size_t len)
{
struct svcinfo *si;
for (si = svclist; si; si = si->next) {
if ((len == si->len) &&
!memcmp(s16, si->name, len * sizeof(uint16_t))) {
return si;
}
}
return NULL;
}
终于找到了尽头,svclist是一个链表,ServiceManager在收到checkService请求后,根据service name遍历svclist,返回命中的节点。之后再一路回到调用的原点:find_svc -> do_find_service,在这里它返回的是节点的handle成员变量。节点的数据类型定义在frameworks/native/cmds/servicemanager/service_manager.c:128
struct svcinfo
{
struct svcinfo *next;
uint32_t handle;
struct binder_death death;
int allow_isolated;
size_t len;
uint16_t name[0];
};
从数据类型上来看,我们只能知道handle是一个整形数字,它是怎么来的?肯定是服务端先来这里注册的,然后ServiceManager把节点中的信息缓存到svclist链表里去,等待客户端过来请求,就把handle返回给客户端。
继续向调用原点返回,从do_find_service –> svcmgr_handle
frameworks/native/cmds/servicemanager/service_manager.c:296
handle = do_find_service(bs, s, len, txn->sender_euid, txn->sender_pid);
if (!handle)
break;
bio_put_ref(reply, handle);
return 0;
svcmgr_handle得到handle后,调用bio_put_ref把它塞到reply里。然后svcmgr_handle -> binder_parse,后者调用binder_send_reply把reply发送出去。这样ServiceManager就完成了一次checkService的响应。
不过还是有一些细节需要弄清楚,我们先回到svcmgr_handle的bio_put_ref(…)函数,看看他是怎么组织reply的,frameworks/native/cmds/servicemanager/binder.c:505
void bio_put_ref(struct binder_io *bio, uint32_t handle)
{
struct flat_binder_object *obj;
if (handle)
obj = bio_alloc_obj(bio);
else
obj = bio_alloc(bio, sizeof(*obj));
if (!obj)
return;
obj->flags = 0x7f | FLAT_BINDER_FLAG_ACCEPTS_FDS;
obj->type = BINDER_TYPE_HANDLE;
obj->handle = handle;
obj->cookie = 0;
}
还记得reply吧?上文在干活之前给它初始化成这样:
接下来进入bio_alloc_obj(…),frameworks/native/cmds/servicemanager/binder.c:468
static struct flat_binder_object *bio_alloc_obj(struct binder_io *bio)
{
struct flat_binder_object *obj;
obj = bio_alloc(bio, sizeof(*obj));
if (obj && bio->offs_avail) {
bio->offs_avail--; // 它记录offs区域还有多少容量
// offs区域是一个size_t型数组,每个元素记录data区域中object相对于data0的偏移
*bio->offs++ = ((char*) obj) - ((char*) bio->data0);
return obj;
}
bio->flags |= BIO_F_OVERFLOW;
return NULL;
}
继续到bio_alloc(…),frameworks/native/cmds/servicemanager/binder.c:437
static void *bio_alloc(struct binder_io *bio, size_t size)
{ // size=sizeof(flat_binder_object)
size = (size + 3) & (~3);
if (size > bio->data_avail) { // 溢出判断
bio->flags |= BIO_F_OVERFLOW;
return NULL;
} else { // 主干在这,原来是从bio->data中分配出的空间
void *ptr = bio->data;
bio->data += size;
bio->data_avail -= size;
return ptr;
}
}
到bio_put_ref(…)函数返回时,他组织成的数据结构如下,我把被修改过的成员标橙色了:
binder_io只是一个数据索引,具体的数据是放在rdata中的,rdata又分两个区域:1、object指针索引区;2、数据区。数据区存放有基本数据类型,如int、string;也有抽象数据类型,如flat_binder_object。object指针索引区记录数据区中每一个抽象数据类型的偏移量。binder_io则记录rdata区域每个部分的起始位置、当前栈顶位置和所剩空间。
svcmgr_handle(…)调用bio_put_ref(…)组织完reply数据之后就返回到binder_parser(…),然后调用binder_sendbinder_parse_raply(…)
frameworks/native/cmds/servicemanager/binder.c:245
res = func(bs, txn, &msg, &reply);
binder_send_reply(bs, &reply, txn->data.ptr.buffer, res);
svcmgr_handle的返回值res为0,表示成功,该值被传入binder_send_reply(…)。一并被传入的还有txn的数据成员data.ptr.buffer,这是从客户端发来的请求数据,继续进入函数
frameworks/native/cmds/servicemanager/binder.c:170
void binder_send_reply(struct binder_state *bs,
struct binder_io *reply,
binder_uintptr_t buffer_to_free,
int status)
{ // status=0
struct {
uint32_t cmd_free;
binder_uintptr_t buffer;
uint32_t cmd_reply;
struct binder_transaction_data txn;
} __attribute__((packed)) data;
data.cmd_free = BC_FREE_BUFFER;
data.buffer = buffer_to_free;
data.cmd_reply = BC_REPLY;
data.txn.target.ptr = 0;
data.txn.cookie = 0;
data.txn.code = 0;
if (status) {
data.txn.flags = TF_STATUS_CODE;
data.txn.data_size = sizeof(int);
data.txn.offsets_size = 0;
data.txn.data.ptr.buffer = (uintptr_t)&status;
data.txn.data.ptr.offsets = 0;
} else {
data.txn.flags = 0;
data.txn.data_size = reply->data - reply->data0;
data.txn.offsets_size = ((char*) reply->offs) - ((char*) reply->offs0);
data.txn.data.ptr.buffer = (uintptr_t)reply->data0;
data.txn.data.ptr.offsets = (uintptr_t)reply->offs0;
}
binder_write(bs, &data, sizeof(data));
}
这是在组织完整的响应数据。把完整的数据描绘出来如下,真是一盘大棋!客户端组织的数据用蓝色标出,ServiceManager组织的数据用红色标出。从图上可以清晰地看出原来reply并没有打到响应数据包里,只是作中间缓存之用。
以上是关于Binder学习笔记—— ServiceManager如何响应checkService请求的主要内容,如果未能解决你的问题,请参考以下文章
Binder学习笔记—— binder_transaction(...)都干了什么?
Binder学习笔记—— binder_transaction(...)都干了什么?