蒙特卡洛采样之拒绝采样(Reject Sampling)

Posted 白马负金羁

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了蒙特卡洛采样之拒绝采样(Reject Sampling)相关的知识,希望对你有一定的参考价值。

引子

蒙特卡洛(Monte Carlo)方法是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为基础的数值计算方法。它的核心思想就是使用随机数(或更常见的伪随机数)来解决一些复杂的计算问题。

当所求解问题可以转化为某种随机分布的特征数(比如随机事件出现的概率,或者随机变量的期望值等)时,往往就可以考虑使用蒙特卡洛方法。通过随机抽样的方法,以随机事件出现的频率估计其概率,或者以抽样的数字特征估算随机变量的数字特征,并将其作为问题的解。这种方法多用于求解复杂的高维积分问题。

实际应用中,我们所要面对的第一个问题就是如何抽样?在统计学中, 抽样(或称采样)是指从目标总体中抽取一部分个体作为样本的过程。

例如,我们想知道一所大学里所有男生的平均身高。但是因为学校里的男生可能有上万人之多,所以为每个人都测量一下身高可能存在困难,于是我们从每个学院随机挑选出100名男生来作为样本,这个过程就是抽样。

但是在计算机模拟时,我们所说的抽样,其实是指从一个概率分布中生成观察值(observations)的方法。而这个分布通常是由其概率密度函数(PDF)来表示的。而且,即使在已知PDF的情况下,让计算机自动生成观测值也不是一件容易的事情。从本质上来说,计算机只能实现对均匀分布(Uniform distribution)的采样。

具体来说,我们可能要面对的问题包括:

  • 计算机只能实现对均匀分布的采样,但我们仍然可以在此基础上对更为复杂的分布进行采样&#x

以上是关于蒙特卡洛采样之拒绝采样(Reject Sampling)的主要内容,如果未能解决你的问题,请参考以下文章

3D数学系列之——再谈蒙特卡洛积分和重要性采样

470. Implement Rand10() Using Rand7() (拒绝采样Reject Sampling)

采样之Gibbs采样

马尔科夫链蒙特卡洛采样(MCMC)入门

Diffusion Models/Score-based Generative Models背后的深度学习原理:蒙特卡洛采样法和重要采样法

Diffusion Models/Score-based Generative Models背后的深度学习原理:蒙特卡洛采样法和重要采样法