题目链接:ural 1707. Hypnotoad‘s Secret
题目大意:给定N和M,然后N组s0, t0, Δs, Δt, k,每组能够计算出k个星星的坐标;M组a0, b0, c0, d0, Δa, Δb, Δc,?
Δd, q。每组要求算出q个矩形,推断矩形内是否包括星星,对于q≥20的情况要依据公式计算一个值就可以。
解题思路:计算出全部的星星坐标和矩阵,这个每的说了,将矩阵差分成两点。通过计算出每一个点左下角有多少个星
星,然后用容斥计算出矩阵内是否有点。这个属于线段树的一个应用。
#include <cstdio>
#include <cstring>
#include <vector>
#include <map>
#include <algorithm>
using namespace std;
typedef long long ll;
const ll mod = 200904040963LL;
const int maxn = 300000;
#define lson(x) ((x)<<1)
#define rson(x) (((x)<<1)|1)
int lc[maxn << 2], rc[maxn << 2], s[maxn << 2];
inline void pushup(int u) {
s[u] = s[lson(u)] + s[rson(u)];
}
void build (int u, int l, int r) {
lc[u] = l;
rc[u] = r;
s[u] = 0;
if (l == r)
return;
int mid = (l + r) / 2;
build(lson(u), l, mid);
build(rson(u), mid + 1, r);
pushup(u);
}
void modify(int u, int x) {
if (lc[u] == x && x == rc[u]) {
s[u] += 1;
return;
}
int mid = (lc[u] + rc[u]) / 2;
if (x <= mid)
modify(lson(u), x);
else
modify(rson(u), x);
pushup(u);
}
int query(int u, int l, int r) {
if (l <= lc[u] && rc[u] <= r)
return s[u];
int mid = (lc[u] + rc[u]) / 2, ret = 0;
if (l <= mid)
ret += query(lson(u), l, r);
if (r > mid)
ret += query(rson(u), l, r);
return ret;
}
struct point {
int t, x, y;
point (int x = 0, int y = 0, int t = 0) {
set(x, y);
this->t = t;
}
void set (int x, int y) {
this->x = x;
this->y = y;
}
friend bool operator < (const point& a, const point& b) {
if (a.x != b.x)
return a.x < b.x;
if (a.y != b.y)
return a.y < b.y;
return a.t < b.t;
}
};
struct state {
point a, b;
state (point a, point b) {
this->a = a;
this->b = b;
}
};
int N, M, P;
ll T[350];
vector<int> pos, tmp, cnt;
vector<point> vec;
vector<state> que;
map<point, int> G;
inline void add_point (ll x, ll y, int k) {
vec.push_back(point(x, y, k));
tmp.push_back(y);
}
inline void add_state (int a, int b, int c, int d) {
add_point(a - 1, b - 1, 1);
add_point(c, d, 1);
int u = vec.size();
que.push_back(state(vec[u-2], vec[u-1]));
add_point(a - 1, d, 1);
add_point(c, b - 1, 1);
}
inline int find (int a) {
return lower_bound(pos.begin(), pos.end(), a) - pos.begin();
}
void init () {
G.clear();
cnt.clear();
vec.clear();
que.clear();
pos.clear();
tmp.clear();
int a, b, c, d, aa, bb, cc, dd, k;
for (int i = 0; i < M; i++) {
scanf("%d%d%d%d%d", &a, &b, &aa, &bb, &k);
a = (a + N) % N; b = (b + N) % N;
for (int j = 0; j < k; j++) {
add_point(a, b, 0);
a = (a + aa + N) % N;
b = (b + bb + N) % N;
}
}
scanf("%d", &P);
for (int i = 0; i < P; i++) {
scanf("%d%d%d%d", &a, &b, &c, &d);
scanf("%d%d%d%d%d", &aa, &bb, &cc, &dd, &k);
a = (a + N) % N; b = (b + N) % N;
c = (c + N) % N; d = (d + N) % N;
cnt.push_back(k);
for (int j = 0; j < k; j++) {
add_state(min(a, b), min(c, d), max(a, b), max(c, d));
a = (a + aa + N) % N; b = (b + bb + N) % N;
c = (c + cc + N) % N; d = (d + dd + N) % N;
}
}
sort(vec.begin(), vec.end());
sort(tmp.begin(), tmp.end());
pos.push_back(tmp[0]);
for (int i = 1; i < tmp.size(); i++) {
if (tmp[i] != tmp[i-1])
pos.push_back(tmp[i]);
}
build(1, 0, pos.size());
}
inline int judge (state u) {
return G[u.b] + G[u.a] - G[point(u.b.x, u.a.y, 1)] - G[point(u.a.x, u.b.y, 1)];
}
void solve () {
for (int i = 0; i < vec.size(); i++) {
if (vec[i].t)
G[vec[i]] = query(1, 0, find(vec[i].y));
else
modify(1, find(vec[i].y));
}
int mv = 0;
for (int i = 0; i < cnt.size(); i++) {
if (cnt[i] > 20) {
ll ret = 0;
for (int j = 0; j < cnt[i]; j++)
ret = (ret + (judge(que[mv + j]) > 0 ? 1 : 0) * T[j]) % mod;
printf("%lld", ret);
} else {
for (int j = 0; j < cnt[i]; j++)
printf("%d", judge(que[mv + j]) > 0 ?
1 : 0);
}
mv += cnt[i];
printf("\n");
}
}
int main () {
T[0] = 1;
for (int i = 1; i <= 345; i++)
T[i] = T[i-1] * 7 % mod;
while (scanf("%d%d", &N, &M) == 2) {
init();
solve();
}
return 0;
}