排序算法——归并排序与递归

Posted llguanli

tags:

篇首语:本文由小常识网(cha138.com)小编为大家整理,主要介绍了排序算法——归并排序与递归相关的知识,希望对你有一定的参考价值。

基本思想

分析归并排序之前。我们先来了解一下分治算法

分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题。这些子问题相互独立且与原问题性质相同。求出子问题的解。就可得到原问题的解。

分治算法的一般步骤:

(1)分解,将要解决的问题划分成若干规模较小的同类问题;

(2)求解,当子问题划分得足够小时,用较简单的方法解决。

(3)合并。按原问题的要求,将子问题的解逐层合并构成原问题的解。

?

归并排序是分治算法的典型应用。

归并排序先将一个无序的N长数组切成N个有序子序列(仅仅有一个数据的序列觉得是有序序列),然后两两合并。再将合并后的N/2(或者N/2 + 1)个子序列继续进行两两合并,以此类推得到一个完整的有序数组。

步骤例如以下图所看到的:

技术分享图片


java实现

归并排序的核心思想是将两个有序的数组归并到还有一个数组中,所以须要开辟额外的空间

第一步要理清归并的思路。假设如今有两个有序数组A和B,要将两者有序地归并到数组C中。

我们用一个实例来推演:

技术分享图片

上图中。A数组中有四个元素,B数组中有六个元素,首先比較A、B中的第一个元素,将较小的那个放到C数组的第一位,由于该元素就是A、B全部元素中最小的。上例中。7小于23,所以将7放到了C中。

然后,用23与B中的其它元素比較。假设小于23,继续按顺序放到C中;假设大于23。则将23放入C中。

23放入C中之后。用23之后的47作为基准元素,与B中的其它元素继续比較,反复上面的步骤。

假设有一个数组的元素已经全部拷贝到C中了,那么将还有一个数组中的剩余元素依次插入C中就可以。至此结束。

依照上面的思路,用java实现:

/**
    * 归并arrayA与arrayB到arrayC中
    * @param arrayA  待归并的数组A
    * @param sizeA 数组A的长度
    * @param arrayB  待归并的数组B
    * @param sizeB 数组B的长度
    * @param arrayC  辅助归并排序的数组
    */
   public static void merge(int [] arrayA,int sizeA,
                         int [] arrayB,int sizeB,
                         int [] arrayC){
      
       int i=0,j=0,k=0;  //分别当作arrayA、arrayB、arrayC的下标指针
             
       while(i<sizeA&& j<sizeB){  //两个数组都不为空
          if(arrayA[i]<arrayB[j]){//将两者较小的那个放到arrayC中
              arrayC[k++]= arrayA[i++]; 
          }else{
              arrayC[k++]= arrayB[j++];
          }
       }  //该循环结束后。一个数组已经全然拷贝到arrayC中了,还有一个数组中还有元素
      
       //后面的两个while循环用于处理还有一个不为空的数组
       while(i<sizeA){ 
          arrayC[k++]= arrayA[i++]; 
       }
      
       while(j<sizeB){ 
          arrayC[k++]= arrayA[j++];
       }
      
       for(intl=0;l<arrayC.length;l++){  //打印新数组中的元素
          System.out.print(arrayC[l]+"\t");
       }
   }

?再归并之前,还有一步工作须要提前做好,就是数组的分解,能够通过递归的方法来实现。递归(Recursive)是算法设计中经常使用的思想。

这样通过先递归的分解数组,再合并数组就完成了归并排序。

完整的java代码例如以下:

public class Sort {
 
   private int [] array;  //待排序的数组
  
   public Sort(int [] array){
       this.array= array;
   }
  
   //按顺序打印数组中的元素
   public void display(){
       for(int i=0;i<array.length;i++){
          System.out.print(array[i]+"\t");
       }
       System.out.println();
   }
 
   //归并排序
   public void mergeSort(){
      
       int[] workSpace = new int [array.length]; //用于辅助排序的数组
       recursiveMergeSort(workSpace,0,workSpace.length-1);
   }
  
   /**
    * 递归的归并排序
    * @param workSpace  辅助排序的数组
    * @param lowerBound 欲归并数组段的最小下标
    * @param upperBound 欲归并数组段的最大下标
    */
   private void recursiveMergeSort(int [] workSpace,int lowerBound,int upperBound){
      
       if(lowerBound== upperBound){  //该段仅仅有一个元素,不用排序
          return;
       }else{
          int mid = (lowerBound+upperBound)/2;
          recursiveMergeSort(workSpace,lowerBound,mid);    //对低位段归并排序
          recursiveMergeSort(workSpace,mid+1,upperBound);  //对高位段归并排序
          merge(workSpace,lowerBound,mid,upperBound);
          display(); 
       }
   }
 
   /**
    * 对数组array中的两段进行合并。lowerBound~mid为低位段,mid+1~upperBound为高位段
    * @param workSpace 辅助归并的数组,容纳归并后的元素
    * @param lowerBound 合并段的起始下标
    * @param mid 合并段的中点下标
    * @param upperBound 合并段的结束下标
    */
   private void merge(int [] workSpace,int lowerBound,int mid,int upperBound){
      
       int lowBegin = lowerBound;  //低位段的起始下标
       int lowEnd = mid;           //低位段的结束下标
       int highBegin = mid+1;  //高位段的起始下标
       int highEnd = upperBound;  //高位段的结束下标
       int j = 0; //workSpace的下标指针
       int n = upperBound-lowerBound+1;  //归并的元素总数
      
       while(lowBegin<=lowEnd && highBegin<=highEnd){ 
          if(array[lowBegin]<array[highBegin]){//将两者较小的那个放到workSpace中
              workSpace[j++]= array[lowBegin++]; 
          }else{
              workSpace[j++]= array[highBegin++]; 
          }
       } 
      
       while(lowBegin<=lowEnd){ 
          workSpace[j++]= array[lowBegin++]; 
       }
      
       while(highBegin<=highEnd){ 
          workSpace[j++]= array[highBegin++]; 
       }
      
       for(j=0;j<n;j++){  //将归并好的元素拷贝到array中
          array[lowerBound++]= workSpace[j];
       }
      
   }
}
用以下代码測试:

int [] a ={6,2,7,4,8,1,5,3};
Sort sort = newSort(a);
sort.mergeSort();

打印结果例如以下:

技术分享图片


归并的顺序是这种:先将初始数组分为两部分。先归并低位段,再归并高位段。对低位段与高位段继续分解,低位段分解为更细分的一对低位段与高位段,高位段相同分解为更细分的一对低位段与高位段。依次类推。

上例中,第一步,归并的是6与2,第二步归并的是7和4。第三部归并的是前两步归并好的子段[2,6]与[4,7]。至此,数组的左半部分(低位段)归并完成,然后归并右半部分(高位段)。

所以第四步归并的是8与1,第四部归并的是5与3,第五步归并的是前两步归并好的字段[1,8]与[3,5]。

至此,数组的右半部分归并完成。

最后一步就是归并数组的左半部分[2,4,6,7]与右半部分[1,3,5,8]。

归并排序结束。

?

在本文開始对归并排序的描写叙述中。第一躺归并是对全部相邻的两个元素归并结束之后,才进行下一轮归并,并非先归并左半部分,再归并右半部分。可是程序的运行顺序与我们对归并排序的分析逻辑不一致。所以理解起来有些困难。

以下结合代码与图例来具体分析一下归并排序的过程。

虚拟机栈(VM ?Stack)是描写叙述Java方法运行的内存模型,每一次方法的调用都伴随着一次压栈、出栈操作。

我们要排序的数组为:

int [] a = {6,2,7,4,8,1,5,3}

?

当main()方法调用mergeSort()方法时,被调用的方法被压入栈中,然后程序进入mergeSort()方法:

public void mergeSort(){
       int[] workSpace = new int [array.length]; //用于辅助排序的数组
       recursiveMergeSort(workSpace,0,workSpace.length-1);
   }
此时,mergeSort()又调用了recursiveMergeSort(workSpace,0,7)方法,recursiveMergeSort(workSpace,0,7)方法也被压入栈中,在mergeSort()之上。

然后,程序进入到recursiveMergeSort(workSpace,0,7)方法: ? ??

 if(lowerBound== upperBound){  //该段仅仅有一个元素,不用排序
          return;
       }else{
          int mid = (lowerBound+upperBound)/2;
          recursiveMergeSort(workSpace,lowerBound,mid);    //对低位段归并排序
          recursiveMergeSort(workSpace,mid+1,upperBound);  //对高位段归并排序
          merge(workSpace,lowerBound,mid,upperBound);
          display(); 
       }

?lowerBound參数值为0,upperBound參数值为7,不满足lowerBound== upperBound的条件。所以方法进入else分支,然后调用方法recursiveMergeSort(workSpace,0,3) ,

recursiveMergeSort(workSpace,0,3)被压入栈中,此时栈的状态例如以下:

技术分享图片

然而,recursiveMergeSort(workSpace,0,3)不能马上返回。它在内部又会调用recursiveMergeSort(workSpace,0,1),recursiveMergeSort(workSpace,0,1)又调用了recursiveMergeSort(workSpace,0,0),此时,栈中的状态例如以下:

技术分享图片

程序运行到这里。终于有一个方法能够返回了结果了——recursiveMergeSort(workSpace,0,0),该方法的运行的逻辑是对数组中的下标从0到0的元素进行归并。该段仅仅有一个元素,所以不用归并。马上return。

方法一旦return。就意味着方法结束,recursiveMergeSort(workSpace,0,0)从栈中弹出。这时候,程序跳到了代码片段(二)中的第二行:

recursiveMergeSort(workSpace,1,1);

该方法入栈。与recursiveMergeSort(workSpace,0,0)相似,不用归并,直接返回。方法出栈。

这时候程度跳到了代码片段(二)中的第三行:

merge(workSpace,0,0,1);

即对数组中的前两个元素进行合并(自然,merge(workSpace,0,0,1)也伴随着一次入栈与出栈)。

至此,代码片段(二)运行完成,recursiveMergeSort(workSpace,0,1)方法出栈,程序跳到代码片段(三)的第二行:

recursiveMergeSort(workSpace,2,3);

该方法是对数组中的第三个、第四个元素进行归并。与运行recursiveMergeSort(workSpace,0,1)的过程相似,终于会将第三个、第四个元素归并排序。

然后,程序跳到程序跳到代码片段(三)的第三行:

merge(workSpace,0,1,3);

将前面已经排好序的两个子序列(第一第二个元素为一组、第三第四个元素为一组)合并。

然后recursiveMergeSort(workSpace,0,3)出栈,程序跳到代码片段(四)的第二行:

recursiveMergeSort(workSpace,4,7);

对数组的右半部分的四个元素进行归并排序,伴随着一系列的入栈、出栈,最后将后四个元素排好。

此时,数组的左半部分与右半部分已经有序。

然后程序跳到代码片段(四)第三行:

merge(workSpace,0,3,7);

对数组的左半部分与右半部分合并。

然后recursiveMergeSort(workSpace,4,7)出栈,mergeSort()出栈,最后main()方法出栈。程序结束。


算法分析

先来分析一下复制的次数。

假设待排数组有8个元素。归并排序须要分3层,第一层有四个包括两个数据项的自数组,第二层包括两个包括四个数据项的子数组,第三层包括一个8个数据项的子数组。合并子数组的时候,每一层的全部元素都要经历一次复制(从原数组拷贝到workSpace数组),复制总次数为3*8=24次,即层数乘以元素总数。

设元素总数为N,则层数为log2N。复制总次数为N*log2N。

事实上,除了从原数组拷贝到workSpace数组。还须要从workSpace数组拷贝到原数组,所以。终于的复制复制次数为2*N*log2N。

在大O表示法中,常数能够忽略。所以归并排序的时间复杂度为O(N* log2N)。

一般来讲。复制操作的时间消耗要远大于比較操作的时间消耗,时间复杂度是由复制次数主导的。

?

以下我们再来分析一下比較次数。

在归并排序中,比較次数总是比复制次数少一些。

如今给定两个各有四个元素的子数组。首先来看一下最坏情况和最好情况下的比較次数为多少。

技术分享图片

第一种情况。数据项大小交错,所以必须进行7次比較,另外一种情况中,一个数组比还有一个数组中的全部元素都要小,因此仅仅须要4次比較。

当归并两个子数组时。假设元素总数为N。则最好情况下的比較次数为N/2,最坏情况下的比較次数为N-1。

假设待排数组的元素总数为N。则第一层须要N/2次归并。每次归并的元素总数为2;则第一层须要N/4次归并。每次归并的元素总数为4;则第一层须要N/8次归并,每次归并的元素总数为8……最后一次归并次数为1,归并的元素总数为N。总层数为log2N。

最好情况下的比較总数为:

N/2*(2/2)+ N/4*(4/2)+N/8*(8/2)+...+1*(N/2) = (N/2)*log2N

最好情况下的比較总数为:

N/2*(2-1)+ N/4*(4-1)+N/8*(8-1)+...+1*(N-1) =

(N-N/2)+ (N-N/4)+(N-N/8)+...+(N-1)=

N*log2N-(1+N/2+N/4+..)< N*log2N

可见,比較次数介于(N/2)*log2N与N*log2N之间。假设用大O表示法。时间复杂度也为O(N* log2N)。

以上是关于排序算法——归并排序与递归的主要内容,如果未能解决你的问题,请参考以下文章

排序算法:直接插入排序归并排序(递归与非递归实现)

排序算法:直接插入排序归并排序(递归与非递归实现)

排序算法:直接插入排序归并排序(递归与非递归实现)

排序算法:直接插入排序归并排序(递归与非递归实现)

排序算法——归并排序与递归

[ 数据结构 -- 手撕排序算法第六篇 ] 归并排序(上)--递归方法实现